public void GenerateMesh(NeatGenome genome) { // Perform analysis AcyclicNetworkDepthAnalysis depthAnalysis = new AcyclicNetworkDepthAnalysis(); NetworkDepthInfo depthInfo = depthAnalysis.CalculateNodeDepths(genome); int maxDepth = depthInfo._networkDepth; int[] nodesPerDepthLevel = new int[maxDepth]; Dictionary <int, List <int> > nodesByDepth = new Dictionary <int, List <int> >(); Dictionary <uint, int> nodeIdxById = new Dictionary <uint, int>(); int mostNodesPerLayer = 0; for (int i = 0; i < genome.NodeList.Count; i++) { int depth = depthInfo._nodeDepthArr[i]; List <int> nodes; if (!nodesByDepth.TryGetValue(depth, out nodes)) { nodes = new List <int>(); nodesByDepth.Add(depth, nodes); } nodes.Add(i); mostNodesPerLayer = Mathf.Max(++nodesPerDepthLevel[depth], mostNodesPerLayer); } List <Vector3> vertices; var neuronsMesh = GenerateNeuronsMesh(genome, nodeIdxById, maxDepth, mostNodesPerLayer, nodesByDepth, out vertices); neuronObject.GetComponent <MeshFilter>().mesh = neuronsMesh; var connectionMesh = GenerateConnectionsMesh(genome, nodeIdxById, vertices); connectionObject.GetComponent <MeshFilter>().mesh = connectionMesh; }
/// <summary> /// Creates a AcyclicNetwork from an INetworkDefinition. /// </summary> public static FastAcyclicNetwork CreateFastAcyclicNetwork(INetworkDefinition networkDef) { Debug.Assert(!CyclicNetworkTest.IsNetworkCyclic(networkDef), "Attempt to decode a cyclic network into a FastAcyclicNetwork."); // Determine the depth of each node in the network. // Node depths are used to separate the nodes into depth based layers, these layers can then be // used to determine the order in which signals are propagated through the network. AcyclicNetworkDepthAnalysis depthAnalysis = new AcyclicNetworkDepthAnalysis(); NetworkDepthInfo netDepthInfo = depthAnalysis.CalculateNodeDepths(networkDef); // Construct an array of NodeInfo, ordered by node depth. // Create/populate NodeInfo array. int[] nodeDepthArr = netDepthInfo._nodeDepthArr; INodeList nodeList = networkDef.NodeList; int nodeCount = nodeList.Count; NodeInfo[] nodeInfoByDepth = new NodeInfo[nodeCount]; for (int i = 0; i < nodeCount; i++) { nodeInfoByDepth[i]._nodeId = nodeList[i].Id; nodeInfoByDepth[i]._definitionIdx = i; nodeInfoByDepth[i]._nodeDepth = nodeDepthArr[i]; } // Sort NodeInfo array. // We use an IComparer here because an anonymous method is not accepted on the method overload that accepts // a sort range, which we use to avoid sorting the input and bias nodes. Sort() performs an unstable sort therefore // we must restrict the range of the sort to ensure the input and bias node indexes are unchanged. Restricting the // sort to the required range is also more efficient (less items to sort). int inputAndBiasCount = networkDef.InputNodeCount + 1; Array.Sort(nodeInfoByDepth, inputAndBiasCount, nodeCount - inputAndBiasCount, NodeDepthComparer.__NodeDepthComparer); // Array of live node indexes indexed by their index in the original network definition. This allows us to // locate the position of input and output nodes in their new positions in the live network data structures. int[] newIdxByDefinitionIdx = new int[nodeCount]; // Dictionary of live node indexes keyed by node ID. This allows us to convert the network definition connection // endpoints from node IDs to indexes into the live/runtime network data structures. Dictionary <uint, int> newIdxById = new Dictionary <uint, int>(nodeCount); // Populate both the lookup array and dictionary. for (int i = 0; i < nodeCount; i++) { NodeInfo nodeInfo = nodeInfoByDepth[i]; newIdxByDefinitionIdx[nodeInfo._definitionIdx] = i; newIdxById.Add(nodeInfo._nodeId, i); } // Make a copy of the sub-range of newIdxByDefinitionIdx that represents the output nodes. int outputCount = networkDef.OutputNodeCount; int[] outputNeuronIdxArr = new int[outputCount]; // Note. 'inputAndBiasCount' holds the index of the first output node. Array.Copy(newIdxByDefinitionIdx, inputAndBiasCount, outputNeuronIdxArr, 0, outputCount); // Construct arrays with additional 'per node' data/refs (activation functions, activation fn auxiliary data). IActivationFunctionLibrary activationFnLibrary = networkDef.ActivationFnLibrary; IActivationFunction[] nodeActivationFnArr = new IActivationFunction[nodeCount]; double[][] nodeAuxArgsArray = new double[nodeCount][]; for (int i = 0; i < nodeCount; i++) { int definitionIdx = nodeInfoByDepth[i]._definitionIdx; nodeActivationFnArr[i] = activationFnLibrary.GetFunction(nodeList[definitionIdx].ActivationFnId); nodeAuxArgsArray[i] = nodeList[definitionIdx].AuxState; } //=== Create array of FastConnection(s). // Loop the connections and lookup the node IDs for each connection's end points using newIdxById. IConnectionList connectionList = networkDef.ConnectionList; int connectionCount = connectionList.Count; FastConnection[] fastConnectionArray = new FastConnection[connectionCount]; for (int i = 0; i < connectionCount; i++) { INetworkConnection conn = connectionList[i]; fastConnectionArray[i]._srcNeuronIdx = newIdxById[conn.SourceNodeId]; fastConnectionArray[i]._tgtNeuronIdx = newIdxById[conn.TargetNodeId]; fastConnectionArray[i]._weight = conn.Weight; } // Sort fastConnectionArray by source node index. This allows us to activate the connections in the // order they are present within the network (by depth). We also secondary sort by target index to // improve CPU cache coherency of the data (in order accesses that are as close to each other as possible). Array.Sort(fastConnectionArray, delegate(FastConnection x, FastConnection y) { if (x._srcNeuronIdx < y._srcNeuronIdx) { return(-1); } if (x._srcNeuronIdx > y._srcNeuronIdx) { return(1); } // Secondary sort on target index. if (x._tgtNeuronIdx < y._tgtNeuronIdx) { return(-1); } if (x._tgtNeuronIdx > y._tgtNeuronIdx) { return(1); } // Connections are equal (this should not actually happen). return(0); }); // Create an array of LayerInfo(s). Each LayerInfo contains the index + 1 of both the last node and last // connection in that layer. // The array is in order of depth, from layer zero (bias and inputs nodes) to the last layer // (usually output nodes, but not necessarily if there is a dead end pathway with a high number of hops). // Note. There is guaranteed to be at least one connection with a source at a given depth level, this is // because for there to be a layer N there must necessarily be a connection from a node in layer N-1 // to a node in layer N. int netDepth = netDepthInfo._networkDepth; LayerInfo[] layerInfoArr = new LayerInfo[netDepth]; // Scanning over nodes can start at inputAndBiasCount instead of zero, // because we know that all nodes prior to that index are at depth zero. int nodeIdx = inputAndBiasCount; int connIdx = 0; for (int currDepth = 0; currDepth < netDepth; currDepth++) { // Scan for last node at the current depth. for (; nodeIdx < nodeCount && nodeInfoByDepth[nodeIdx]._nodeDepth == currDepth; nodeIdx++) { ; } // Scan for last connection at the current depth. for (; connIdx < fastConnectionArray.Length && nodeInfoByDepth[fastConnectionArray[connIdx]._srcNeuronIdx]._nodeDepth == currDepth; connIdx++) { ; } // Store node and connection end indexes for the layer. layerInfoArr[currDepth]._endNodeIdx = nodeIdx; layerInfoArr[currDepth]._endConnectionIdx = connIdx; } return(new FastAcyclicNetwork(nodeActivationFnArr, nodeAuxArgsArray, fastConnectionArray, layerInfoArr, outputNeuronIdxArr, nodeCount, networkDef.InputNodeCount, networkDef.OutputNodeCount)); }