private DataSource PredictionSource(int step) { double[] prediction = trainer.GetPrediction(train_data, step); DataSource prediction_source = new DataSource(); prediction_source.Length = data.Length; float acc = 0; for (int i = 0; i < data.Length; i++) { if (i < network.InputCount() + step - 1) { // prediction_source.Samples[i].x = i; // prediction_source.Samples[i].y = 0.5f; prediction_source.Samples[i].x = 0; prediction_source.Samples[i].y = 0; } else if (i < network.InputCount() + prediction.Length + step - 1) { prediction_source.Samples[i].x = i; prediction_source.Samples[i].y = (float)prediction[i - network.InputCount() - step + 1]; // acc += (float) normalizer.Denormalize(prediction[i - network.InputCount()]); // prediction_source.Samples[i].y = acc; } else { prediction_source.Samples[i].x = 0; prediction_source.Samples[i].y = 0; } } return(prediction_source); }