public static PAPNetworkContainer LoadPAPContainer(string pathName, string fileName)
            {
                throw new NotImplementedException();

                //Load the container
                PAPNetworkContainer returnItem = (PAPNetworkContainer)SerializeObject.Load(pathName + fileName + ".PAPc");

                //Load the network in as well
                returnItem.playerNetworkPool = new NNThreadSafeNetworkPool(NNLoadSave.loadNetwork(fileName + ".eNN", pathName), returnItem.playerId.ToString(), NNThreadSafeNetworkPool.DefaultListLength);

                return(returnItem);
            }
            public void SavePAPContainer(string pathName, string fileName)
            {
                if (playerNetworkPool == null)
                {
                    throw new Exception("Network must be set before the PAP container can be saved out.");
                }

                //Save out the PAPContainer (without the network)
                SerializeObject.Save(pathName + fileName + ".PAPc", this);

                //Save out the network
                NNLoadSave.saveNetwork(playerNetworkPool.BaseNetwork, fileName + ".eNN", pathName);
            }
Пример #3
0
        public void Go3()
        {
            Console.WriteLine("Let's get this show on the road!!");

            long[] allPlayerIds = new long[0];

            //Todo - Add players to allPlayerIds

            //Get all of the playerActions
            Console.WriteLine("Testing new network accuracy for {0} players.", allPlayerIds.Length);

            for (int i = 0; i < allPlayerIds.Length; i++)
            {
                try
                {
                    PokerPlayerNNModelv1 playerPrediction = new PokerPlayerNNModelv1();

                    playerPrediction.populatePlayActions(allPlayerIds[i], 10000, 0);
                    playerPrediction.SuffleDataSource();

                    //playerPrediction.createNetwork();
                    //playerPrediction.createTrainingSets();
                    //playerPrediction.trainNetwork();
                    playerPrediction.Network = NNLoadSave.loadNetwork("generalPlayer.eNN", "");

                    Console.WriteLine("... data loaded for player index {0} ({1}). {2} actions added.", i, allPlayerIds[i], playerPrediction.NeuralNetDataSource.Count);
                    //playerPrediction.SaveNNDataSource("allPlayerPAPData.csv");

                    playerPrediction.createTestingSets();
                    decimal accuracy = playerPrediction.getNetworkAccuracy();
                    Console.WriteLine("PlayerId:{0} Predicted {1}% Of Actions Correctly.", allPlayerIds[i], Math.Round(accuracy, 1));

                    using (System.IO.StreamWriter sw = new System.IO.StreamWriter("accuracy.csv", true))
                        sw.WriteLine(allPlayerIds[i] + ", " + Math.Round(accuracy, 1));
                }
                catch (Exception ex)
                {
                    Console.WriteLine("Meh - Error on playerId {0}.", allPlayerIds[i]);
                    using (System.IO.StreamWriter sw = new System.IO.StreamWriter("errors.txt", true))
                        sw.WriteLine(ex.ToString());
                }
            }

            //NNLoadSave.saveNetwork(playerPrediction.Network, "generalPlayer.eNN", "");
            Console.WriteLine("... completed.");
            Console.ReadKey();
        }
        public playerActionPredictionNetworkManager()
        {
            if (InfoProviderBase.CurrentJob == null)
            {
                defaultNetworkPool = new NNThreadSafeNetworkPool(NNLoadSave.loadNetwork("generalPlayer.eNN", PAP_STORE), "default", NNThreadSafeNetworkPool.DefaultListLength);
            }
            else
            {
                //    defaultNetworkPool = new NNThreadSafeNetworkPool(NNLoadSave.loadNetwork(InfoProviders.InfoProviderBase.CurrentJob.JobData.NeuralNetworkBytes("PAP_generalPlayer.eNN")), "default", NNThreadSafeNetworkPool.DefaultListLength);
            }

            if (backgroundWorkerThread != null)
            {
                throw new Exception("The network manager worker thread is already running!");
            }

            //Start the monitor thread
            //backgroundWorkerThread = new Thread(networkBackgroundWorker);
            //backgroundWorkerThread.Name = "PAP_BackgroundWorker";
            //backgroundWorkerThread.Priority = ThreadPriority.BelowNormal;

            //We are not going to start the worker thread at the moment.
            //backgroundWorkerThread.Start();
        }
Пример #5
0
        public void Go2()
        {
            Console.WriteLine("Let's get this show on the road!!");

            //Get all of the playerActions
            for (int i = 0; i < 20; i++)
            {
                PokerPlayerNNModelv1 playerPrediction = new PokerPlayerNNModelv1();
                playerPrediction.LoadNNDatasource("allPlayerPAPData.csv", PokerPlayerNNModelv1.Input_Neurons, PokerPlayerNNModelv1.Output_Neurons);

                playerPrediction.SuffleDataSource();
                playerPrediction.createNetwork();
                playerPrediction.createTrainingSets();
                playerPrediction.trainNetwork();
                playerPrediction.createTestingSets();
                decimal accuracy = playerPrediction.getNetworkAccuracy();

                Console.WriteLine("Achieved {0}% accuracy.", accuracy);
                NNLoadSave.saveNetwork(playerPrediction.Network, accuracy.ToString() + "_generalPlayer.eNN", "");
            }

            Console.WriteLine("... completed.");
            Console.ReadKey();
        }
Пример #6
0
        protected double[] getPlayerNetworkPrediction(string aiConfigStr, double[] networkInputs)
        {
            try
            {
                lock (locker)
                {
                    //Check to see if the network has already been retreived
                    if (threadSafeNetworkDict.ContainsKey(aiConfigStr))
                    {
                        return(threadSafeNetworkDict[aiConfigStr].getNetworkPrediction(networkInputs));
                    }
                    else
                    {
                        BasicNetwork network = null;
                        //We need to load the network
                        if (InfoProviders.InfoProviderBase.CurrentJob == null)
                        {
                            network = NNLoadSave.loadNetwork(aiConfigStr, AI_FILES_STORE);
                        }
                        else
                        {
                            //network = NNLoadSave.loadNetwork(InfoProviders.InfoProviderBase.CurrentJob.JobData.NeuralNetworkBytes(aiConfigStr));

                            /*
                             * string[] directories = aiConfigStr.Split('\\');
                             * //Check to see if the network needs to be created
                             * if (!File.Exists(FileLocations.ConvertWinFileReferenceToLocal("LocalNetworkStore\\" + aiConfigStr)))
                             * {
                             *  string networkStr = InfoProviders.InfoProviderBase.CurrentJob.JobData.NeuralNetwork(aiConfigStr);
                             *
                             *  if (!Directory.Exists("LocalNetworkStore"))
                             *      Directory.CreateDirectory("LocalNetworkStore");
                             *
                             *  //Make sure all of the necessary directories exist for the network
                             *  //string[] directories = aiConfigStr.Split('\\');
                             *  string currentDir = "LocalNetworkStore";
                             *  for (int i = 0; i < directories.Length - 1; i++)
                             *  {
                             *      if (!Directory.Exists(Path.Combine(currentDir, directories[i])))
                             *          Directory.CreateDirectory(Path.Combine(currentDir, directories[i]));
                             *
                             *      currentDir = Path.Combine(currentDir, directories[i]);
                             *  }
                             *
                             *  File.WriteAllBytes(FileLocations.ConvertWinFileReferenceToLocal("LocalNetworkStore\\" + aiConfigStr), (from current in networkStr.Split('-') select Convert.ToByte(current, 16)).ToArray());
                             * }
                             *
                             * if (InfoProviders.InfoProviderBase.CurrentJob.JobData.ContainsNeuralNetwork(aiConfigStr))
                             *  //We can now delete the entry in the job file otherwise it just takes up alot of memory
                             *  InfoProviders.InfoProviderBase.CurrentJob.JobData.RemoveNeuralNetwork(aiConfigStr);
                             *
                             * //Console.WriteLine("Loading network from LocalNetworkStore combine with {0}", FileLocations.ConvertWinFileReferenceToLocal(aiConfigStr));
                             * network = NNLoadSave.loadNetwork(FileLocations.ConvertWinFileReferenceToLocal(aiConfigStr), "LocalNetworkStore");
                             */
                        }

                        if (!threadSafeNetworkDict.ContainsKey(aiConfigStr))
                        {
                            threadSafeNetworkDict.Add(aiConfigStr, new NNThreadSafeNetworkPool(network, aiConfigStr, NNThreadSafeNetworkPool.DefaultListLength));
                        }

                        return(threadSafeNetworkDict[aiConfigStr].getNetworkPrediction(networkInputs));
                    }
                }
            }
            catch (Exception ex)
            {
                throw new Exception("aiConfigStr was not formatted correctly for the current AI type.", ex);
            }
        }
Пример #7
0
        public void Go()
        {
            double[][] networkPredictedOutputs;

            byte   idealColumn;
            double outputMaxValue1st  = -1;
            byte   outputColumn       = byte.MaxValue;
            int    correctPredictions = 0;

            Console.WriteLine("Let's get this show on the road!!");

            long[] allPlayerIds = new long[0];

            //Todo - Add players to allPlayerIds

            //Before we do PAP we need select specific players based on agression
            //int numHandsCounted=0;
            //double RFreq_PreFlop=0, RFreq_PostFlop=0, CFreq_PreFlop=0, CFreq_PostFlop=0, PreFlopPlayFreq=0;
            //using (System.IO.StreamWriter sw = new System.IO.StreamWriter("playerAggression.csv", false))
            //{
            //    for (int i = 0; i < allPlayerIds.Length; i++)
            //    {
            //        //Break the stats down for the top player to find out what is the needed number of hands for a good answer
            //        //for (int j = 0; j < 353; j++)
            //        //{
            //            numHandsCounted = 0; RFreq_PreFlop = 0; RFreq_PostFlop = 0; CFreq_PreFlop = 0; CFreq_PostFlop = 0; PreFlopPlayFreq = 0;
            //            databaseQueries.PlayerAgressionMetrics(allPlayerIds[i],10000, 1, 1, ref numHandsCounted, ref RFreq_PreFlop, ref RFreq_PostFlop, ref CFreq_PreFlop, ref CFreq_PostFlop, ref PreFlopPlayFreq);
            //            //sw.WriteLine("{0},{1},{2},{3},{4},{5},{6}", allPlayerIds[i], numHandsCounted, RFreq_PreFlop, RFreq_PostFlop, CFreq_PreFlop, CFreq_PostFlop, PreFlopPlayFreq);
            //            sw.WriteLine("{0},{1},{2},{3},{4},{5}", allPlayerIds[i], RFreq_PreFlop, RFreq_PostFlop, CFreq_PreFlop, CFreq_PostFlop, PreFlopPlayFreq);
            //            //Console.WriteLine(j);
            //        //}
            //        sw.Flush();
            //        Console.WriteLine(i);
            //    }
            //}

            //return;
            PokerPlayerNNModelv1 playerPrediction = new PokerPlayerNNModelv1();

            //Get all of the playerActions
            if (true)
            {
                Console.WriteLine("Loading PAP data for {0} players.", allPlayerIds.Length);
                for (int i = 0; i < allPlayerIds.Length; i++)
                {
                    try
                    {
                        playerPrediction.populatePlayActions(allPlayerIds[i], 10000, 0);
                        Console.WriteLine("... data loaded for player index {0} ({1}). {2} actions added.", i, allPlayerIds[i], playerPrediction.NeuralNetDataSource.Count);
                        playerPrediction.SaveNNDataSource("allPlayerPAPData.csv");
                    }
                    catch (Exception ex)
                    {
                        Console.WriteLine("Meh - Error on playerId {0}.", allPlayerIds[i]);
                        using (System.IO.StreamWriter sw = new System.IO.StreamWriter("errors.txt", true))
                            sw.WriteLine(ex.ToString());
                    }
                }
            }
            else
            {
                Console.WriteLine("Loading NNData...");
                playerPrediction.LoadNNDatasource("allPlayerPAPData.csv", PokerPlayerNNModelv1.Input_Neurons, PokerPlayerNNModelv1.Output_Neurons);
                Console.WriteLine("... complete.");
            }

            Console.WriteLine("Shuffling NNData...");
            playerPrediction.SuffleDataSource();
            Console.WriteLine("... complete.");

            Console.WriteLine("Initiating training ...");

            //playerPrediction.createNetwork();
            playerPrediction.Network = NNLoadSave.loadNetwork("generalPlayer.eNN", "");
            //neuralPokerAI.getBotAiNN(false);
            playerPrediction.createTrainingSets();
            playerPrediction.trainNetwork();
            playerPrediction.createTestingSets();

            networkPredictedOutputs = new double[playerPrediction.NetworkInput.Length][];
            ;

            //Create the output array
            for (int i = 0; i < networkPredictedOutputs.Length; i++)
            {
                networkPredictedOutputs[i] = new double[PokerPlayerNNModelv1.Output_Neurons];
            }

            Stopwatch timer = new Stopwatch();

            timer.Start();
            playerPrediction.testNetwork(networkPredictedOutputs);
            timer.Stop();

            for (int i = 0; i < networkPredictedOutputs.GetLength(0); i++)
            {
                outputMaxValue1st = -1;

                //Determine if the output match the ideal
                if (playerPrediction.NetworkIdealOutput[i][0] == 1)
                {
                    idealColumn = 0;
                }
                else if (playerPrediction.NetworkIdealOutput[i][1] == 1)
                {
                    idealColumn = 1;
                }
                else if (playerPrediction.NetworkIdealOutput[i][2] == 1)
                {
                    idealColumn = 2;
                }
                else
                {
                    throw new Exception("This should never happen");
                }

                if (networkPredictedOutputs[i][0] > outputMaxValue1st)
                {
                    outputMaxValue1st = networkPredictedOutputs[i][0];
                    outputColumn      = 0;
                }

                if (networkPredictedOutputs[i][1] > outputMaxValue1st)
                {
                    outputMaxValue1st = networkPredictedOutputs[i][1];
                    outputColumn      = 1;
                }

                if (networkPredictedOutputs[i][2] > outputMaxValue1st)
                {
                    outputMaxValue1st = networkPredictedOutputs[i][2];
                    outputColumn      = 2;
                }

                if (outputColumn == byte.MaxValue)
                {
                    throw new Exception("This should not happen!");
                }

                if (outputColumn != idealColumn)
                {
                    Console.WriteLine("****  Actual-{0},Predicted-{1} - [{2}, {3}, {4}]", idealColumn, outputColumn, String.Format("{0:0.00}", networkPredictedOutputs[i][0]), String.Format("{0:0.00}", networkPredictedOutputs[i][1]), String.Format("{0:0.00}", networkPredictedOutputs[i][2]));
                }
                else
                {
                    //if (idealColumn == 4)
                    //Console.WriteLine("Actual-{0}, Predicted-{1} - [{2}, {3}, {4}, {5}, {6}]", idealColumn, outputColumn, String.Format("{0:0.00}", networkPredictedOutputs[i][0]), String.Format("{0:0.00}", networkPredictedOutputs[i][1]), String.Format("{0:0.00}", networkPredictedOutputs[i][2]), String.Format("{0:0.00}", networkPredictedOutputs[i][3]), String.Format("{0:0.00}", networkPredictedOutputs[i][4]));
                    //Console.WriteLine("Actual-{0},Predicted-{1} - [{2}, {3}, {4}]", idealColumn, outputColumn, String.Format("{0:0.00}", networkPredictedOutputs[i][0]), String.Format("{0:0.00}", networkPredictedOutputs[i][1]), String.Format("{0:0.00}", networkPredictedOutputs[i][2]));
                    correctPredictions++;
                }
            }

            Console.WriteLine("Predicted {0}% Of Actions Correctly.", ((double)correctPredictions / (double)(int)(playerPrediction.DataSourceCount - (int)(playerPrediction.DataSourceCount * playerPrediction.Train_Data_Percent))) * 100);
            Console.WriteLine("Per network compute - {0}ms.", (double)timer.ElapsedMilliseconds / ((double)(playerPrediction.DataSourceCount - (int)(playerPrediction.DataSourceCount * playerPrediction.Train_Data_Percent))));
            //Console.WriteLine("Predicted {0}% Of Actions Correctly.", ((double)correctPredictions / (double)(int)(playerPrediction.DataSourceCount)) * 100);

            NNLoadSave.saveNetwork(playerPrediction.Network, "generalPlayerNew.eNN", "");

            Console.ReadKey();
        }