public static void Run(string[] args)
        {
            // -clusterid $(Cluster) -processid $(Process) -brain Breakout.brain -factor 0.5

            int       clusterId             = 0;
            int       processId             = 0;
            double    discountFactor        = 0.6;
            string    breakoutBrainFilePath = "";
            OptionSet options = new OptionSet()
                                .Add("clusterid=", v => clusterId         = Int32.Parse(v))
                                .Add("processid=", v => processId         = Int32.Parse(v))
                                .Add("factor=", v => discountFactor       = Double.Parse(v, CultureInfo.InvariantCulture))
                                .Add("brain=", v => breakoutBrainFilePath = Path.GetFullPath(v));

            try
            {
                options.Parse(Environment.GetCommandLineArgs().Skip(1));
            }
            catch (OptionException e)
            {
                MyLog.ERROR.WriteLine(e.Message);
            }

            MyProjectRunner runner = new MyProjectRunner(MyLogLevel.DEBUG);
            StringBuilder   result = new StringBuilder();

            runner.OpenProject(breakoutBrainFilePath);
            runner.DumpNodes();
            runner.SaveOnStop(23, true);
            for (int i = 0; i < 5; ++i)
            {
                runner.RunAndPause(1000, 100);
                float[] data = runner.GetValues(23, "Bias");
                MyLog.DEBUG.WriteLine(data[0]);
                MyLog.DEBUG.WriteLine(data[1]);
                result.AppendFormat("{0}: {1}, {2}", i, data[0], data[1]);
                runner.Set(23, typeof(MyQLearningTask), "DiscountFactor", discountFactor);
                runner.RunAndPause(1000, 300);
                data = runner.GetValues(23, "Bias");
                MyLog.DEBUG.WriteLine(data[0]);
                MyLog.DEBUG.WriteLine(data[1]);
                result.AppendFormat(" --- {0}, {1}", data[0], data[1]).AppendLine();
                runner.Reset();
            }

            string resultFilePath = @"res." + clusterId.ToString() + "." + processId.ToString() + ".txt";

            File.WriteAllText(resultFilePath, result.ToString());
            string brainzFilePath = @"state." + clusterId.ToString() + "." + processId.ToString() + ".brainz";

            runner.SaveProject(brainzFilePath);

            runner.Shutdown();
            return;
        }
Пример #2
0
        public void CreatesAndRunsMNIST()
        {
            using (var runner = new MyProjectRunner())
            {
                MyProject project = runner.CreateProject(typeof(MNISTWorld));

                var world = project.World as MNISTWorld;

                var neuralGroup = project.CreateNode <MyNeuralNetworkGroup>();
                project.Network.AddChild(neuralGroup);

                var hiddenLayer = project.CreateNode <MyHiddenLayer>();
                neuralGroup.AddChild(hiddenLayer);

                var outputLayer = project.CreateNode <MyOutputLayer>();
                neuralGroup.AddChild(outputLayer);

                var accumulator = project.CreateNode <MyAccumulator>();
                neuralGroup.AddChild(accumulator);

                // Connect the nodes.

                project.Connect(project.Network.GroupInputNodes[0], neuralGroup, 0, 0);
                project.Connect(project.Network.GroupInputNodes[1], neuralGroup, 0, 1);

                project.Connect(neuralGroup.GroupInputNodes[0], hiddenLayer, 0, 0);

                project.Connect(neuralGroup.GroupInputNodes[1], outputLayer, 0, 1);

                project.Connect(hiddenLayer, outputLayer, 0, 0);

                project.Connect(outputLayer, accumulator, 1, 0);

                // Setup the nodes.

                var sendMnistData = world.SendMNISTTrainData;
                Assert.NotNull(sendMnistData);
                sendMnistData.ExpositionTime = 1;

                world.BitmapOrder = ExampleOrderOption.Shuffle;
                world.OneHot      = true;

                hiddenLayer.Neurons = 40;

                accumulator.ApproachValue.ApproachMethod = MyAccumulator.MyApproachValueTask.SequenceType.Momentum;
                accumulator.ApproachValue.Delta          = 0.1f;
                accumulator.ApproachValue.Target         = 0;
                accumulator.ApproachValue.Factor         = 0.9f;

                // Enable tasks.
                project.World.EnableDefaultTasks();

                neuralGroup.EnableDefaultTasks();
                neuralGroup.RMS.Enabled = true;

                hiddenLayer.EnableDefaultTasks();

                outputLayer.EnableDefaultTasks();

                accumulator.EnableDefaultTasks();
                accumulator.ApproachValue.Enabled = true;

                // Run the simulation.

                runner.RunAndPause(100);

                float error = runner.GetValues(accumulator.Id)[0];
                Assert.True(error < 0.5f);
                //runner.SaveProject(@"c:\foobar.brain");
            }
        }
Пример #3
0
 public float[] GetValues(int nodeId, string blockName = "Output")
 {
     return(m_projectRunner.GetValues(nodeId, blockName));
 }
        public void CreatesAndRunsMNIST()
        {
            using (var runner = new MyProjectRunner())
            {
                MyProject project = runner.CreateProject(typeof(MyMNISTWorld));

                MyWorld world = project.World;

                var neuralGroup = project.CreateNode <MyNeuralNetworkGroup>();
                project.Network.AddChild(neuralGroup);

                var hiddenLayer = project.CreateNode <MyHiddenLayer>();
                neuralGroup.AddChild(hiddenLayer);

                var outputLayer = project.CreateNode <MyOutputLayer>();
                neuralGroup.AddChild(outputLayer);

                var accumulator = project.CreateNode <MyAccumulator>();
                neuralGroup.AddChild(accumulator);

                // Connect the nodes.

                project.Connect(project.Network.GroupInputNodes[0], neuralGroup, 0, 0);
                project.Connect(project.Network.GroupInputNodes[1], neuralGroup, 0, 1);

                project.Connect(neuralGroup.GroupInputNodes[0], hiddenLayer, 0, 0);

                project.Connect(neuralGroup.GroupInputNodes[1], outputLayer, 0, 1);

                project.Connect(hiddenLayer, outputLayer, 0, 0);

                project.Connect(outputLayer, accumulator, 1, 0);

                // Setup the nodes.

                MyTask sendMnistData = world.GetTaskByPropertyName("SendTrainingMNISTData");
                Assert.NotNull(sendMnistData);
                sendMnistData.GetType().GetProperty("RandomEnumerate").SetValue(sendMnistData, true);
                sendMnistData.GetType().GetProperty("ExpositionTime").SetValue(sendMnistData, 1);

                world.GetType().GetProperty("Binary").SetValue(world, true);

                hiddenLayer.Neurons = 40;

                accumulator.ApproachValue.ApproachMethod = MyAccumulator.MyApproachValueTask.SequenceType.Momentum;
                accumulator.ApproachValue.Delta          = 0.1f;
                accumulator.ApproachValue.Target         = 0;
                accumulator.ApproachValue.Factor         = 0.9f;

                // Enable tasks.
                project.World.EnableDefaultTasks();

                neuralGroup.EnableDefaultTasks();
                neuralGroup.RMS.Enabled = true;

                hiddenLayer.EnableDefaultTasks();

                outputLayer.EnableDefaultTasks();

                accumulator.EnableDefaultTasks();
                accumulator.ApproachValue.Enabled = true;

                // Run the simulation.

                runner.RunAndPause(100);

                float error = runner.GetValues(accumulator.Id)[0];
                Assert.True(error < 0.5f);
                //runner.SaveProject(@"c:\foobar.brain");
            }
        }