public void WeightedEmpiricalDistributionConstructorTest2()
        {
            double[] original     = { 5, 5, 1, 4, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 4, 3, 2, 3 };
            var      distribution = new MultivariateEmpiricalDistribution(original.ToArray());

            double[]   weights = { 2, 1, 1, 1, 2, 3, 1, 3, 1, 1, 1, 1 };
            double[]   source  = { 5, 1, 4, 1, 2, 3, 4, 3, 4, 3, 2, 3 };
            double[][] samples = source.ToArray();

            weights = weights.Divide(weights.Sum());

            var target = new MultivariateEmpiricalDistribution(samples,
                                                               weights, distribution.Smoothing);

            Assert.AreEqual(distribution.Mean[0], target.Mean[0]);
            Assert.AreEqual(distribution.Median[0], target.Median[0]);
            Assert.AreEqual(distribution.Mode[0], target.Mode[0]);
            Assert.AreEqual(distribution.Smoothing[0, 0], target.Smoothing[0, 0]);
            Assert.AreEqual(1.3655172413793104, target.Variance[0]);
            Assert.AreEqual(target.Weights, weights);
            Assert.AreEqual(target.Samples, samples);

            for (double x = 0; x < 6; x += 0.1)
            {
                double actual, expected;
                expected = distribution.ComplementaryDistributionFunction(x);
                actual   = target.ComplementaryDistributionFunction(x);
                Assert.AreEqual(expected, actual, 1e-15);

                expected = distribution.DistributionFunction(x);
                actual   = target.DistributionFunction(x);
                Assert.AreEqual(expected, actual, 1e-15);

                expected = distribution.LogProbabilityDensityFunction(x);
                actual   = target.LogProbabilityDensityFunction(x);
                Assert.AreEqual(expected, actual, 1e-15);

                expected = distribution.ProbabilityDensityFunction(x);
                actual   = target.ProbabilityDensityFunction(x);
                Assert.AreEqual(expected, actual, 1e-15);
            }
        }
        public void FitTest()
        {
            double[] original     = { 5, 5, 1, 4, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 4, 3, 2, 3 };
            var      distribution = new MultivariateEmpiricalDistribution(original.ToJagged());

            int[]      weights = { 2, 1, 1, 1, 2, 3, 1, 3, 1, 1, 1, 1 };
            double[]   sources = { 5, 1, 4, 1, 2, 3, 4, 3, 4, 3, 2, 3 };
            double[][] samples = sources.ToJagged();
            var        target  = new MultivariateEmpiricalDistribution(Jagged.Zeros(1, 1));

            target.Fit(samples, weights);

            Assert.AreEqual(distribution.Mean[0], target.Mean[0]);
            Assert.AreEqual(distribution.Median[0], target.Median[0]);
            Assert.AreEqual(distribution.Mode[0], target.Mode[0]);
            Assert.AreEqual(distribution.Smoothing[0, 0], target.Smoothing[0, 0]);
            Assert.AreEqual(distribution.Variance[0], target.Variance[0]);
            Assert.IsTrue(target.Weights.IsEqual(weights.Divide(weights.Sum())));
            Assert.AreEqual(target.Samples, samples);

            for (double x = 0; x < 6; x += 0.1)
            {
                double actual, expected;
                expected = distribution.ComplementaryDistributionFunction(x);
                actual   = target.ComplementaryDistributionFunction(x);
                Assert.AreEqual(expected, actual);

                expected = distribution.DistributionFunction(x);
                actual   = target.DistributionFunction(x);
                Assert.AreEqual(expected, actual);

                expected = distribution.LogProbabilityDensityFunction(x);
                actual   = target.LogProbabilityDensityFunction(x);
                Assert.AreEqual(expected, actual, 1e-15);

                expected = distribution.ProbabilityDensityFunction(x);
                actual   = target.ProbabilityDensityFunction(x);
                Assert.AreEqual(expected, actual, 1e-15);
            }
        }