public void CanSolveForRandomMatrix(int order) { var matrixA = Matrix<double>.Build.Random(order, order, 1); var matrixB = Matrix<double>.Build.Random(order, order, 1); var monitor = new Iterator<double>( new IterationCountStopCriterium<double>(1000), new ResidualStopCriterium<double>(1e-10)); var solver = new MlkBiCgStab(); var matrixX = matrixA.SolveIterative(matrixB, solver, monitor); // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA*matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], 1.0e-7); } } }
public void CanSolveForRandomVector(int order) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var vectorb = MatrixLoader.GenerateRandomDenseVector(order); var monitor = new Iterator(new IIterationStopCriterium[] { new IterationCountStopCriterium(1000), new ResidualStopCriterium(1e-10), }); var solver = new MlkBiCgStab(monitor); var resultx = solver.Solve(matrixA, vectorb); Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA * resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5); Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5); } }
public void CanSolveForRandomMatrix(int order) { var matrixA = Matrix <Complex> .Build.Random(order, order, 1); var matrixB = Matrix <Complex> .Build.Random(order, order, 1); var monitor = new Iterator <Complex>( new IterationCountStopCriterium <Complex>(1000), new ResidualStopCriterium <Complex>(1e-10)); var solver = new MlkBiCgStab(); var matrixX = matrixA.SolveIterative(matrixB, solver, monitor); // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA * matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, 1.0e-5); Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, 1.0e-5); } } }
public void CanSolveForRandomMatrix(int order) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order); var monitor = new Iterator(new IIterationStopCriterium<Complex>[] { new IterationCountStopCriterium(1000), new ResidualStopCriterium(1e-10), }); var solver = new MlkBiCgStab(monitor); var matrixX = solver.Solve(matrixA, matrixB); // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA * matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreApproximatelyEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, 1.0e-5); Assert.AreApproximatelyEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, 1.0e-5); } } }
public void CanSolveForRandomMatrix(int order) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order); var monitor = new Iterator(new IIterationStopCriterium<double>[] { new IterationCountStopCriterium(1000), new ResidualStopCriterium(1e-10) }); var solver = new MlkBiCgStab(monitor); var matrixX = solver.Solve(matrixA, matrixB); // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA * matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreApproximatelyEqual(matrixB[i, j], matrixBReconstruct[i, j], 1.0e-7); } } }
public void CanSolveForRandomVector(int order) { var matrixA = Matrix <Complex> .Build.Random(order, order, 1); var vectorb = Vector <Complex> .Build.Random(order, 1); var monitor = new Iterator <Complex>( new IterationCountStopCriterium <Complex>(1000), new ResidualStopCriterium <Complex>(1e-10)); var solver = new MlkBiCgStab(); var resultx = matrixA.SolveIterative(vectorb, solver, monitor); Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA * resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5); Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5); } }
public void SolveLongMatrix() { var matrix = new SparseMatrix(3, 2); Vector<double> input = new DenseVector(3); var solver = new MlkBiCgStab(); solver.Solve(matrix, input); }
public void SolveLongMatrixThrowsArgumentException() { var matrix = new SparseMatrix(3, 2); var input = new DenseVector(3); var solver = new MlkBiCgStab(); Assert.That(() => matrix.SolveIterative(input, solver), Throws.ArgumentException); }
public void SolveLongMatrixThrowsArgumentException() { var matrix = new SparseMatrix(3, 2); Vector input = new DenseVector(3); var solver = new MlkBiCgStab(); Assert.Throws<ArgumentException>(() => solver.Solve(matrix, input)); }
public void SolveWideMatrixThrowsArgumentException() { var matrix = new SparseMatrix(2, 3); var input = new DenseVector(2); var solver = new MlkBiCgStab(); Assert.That(() => matrix.SolveIterative(input, solver), Throws.ArgumentException); }
public void SolveLongMatrixThrowsArgumentException() { var matrix = new SparseMatrix(3, 2); var input = new DenseVector(3); var solver = new MlkBiCgStab(); Assert.Throws<ArgumentException>(() => matrix.SolveIterative(input, solver)); }
public void SolveWideMatrixThrowsArgumentException() { var matrix = new SparseMatrix(2, 3); var input = new DenseVector(2); var solver = new MlkBiCgStab(); Assert.Throws <ArgumentException>(() => matrix.SolveIterative(input, solver)); }
public void SolveWideMatrix() { var matrix = new SparseMatrix(2, 3); Vector <float> input = new DenseVector(2); var solver = new MlkBiCgStab(); solver.Solve(matrix, input); }
public void SolveLongMatrixThrowsArgumentException() { var matrix = new SparseMatrix(3, 2); Vector input = new DenseVector(3); var solver = new MlkBiCgStab(); Assert.Throws <ArgumentException>(() => solver.Solve(matrix, input)); }
/// <summary> /// The main method that runs the MlkBiCgStab iterative solver. /// </summary> public void UseSolver() { // Create a sparse matrix. For now the size will be 10 x 10 elements Matrix matrix = CreateMatrix(10); // Create the right hand side vector. The size is the same as the matrix // and all values will be 2.0. Vector rightHandSideVector = new DenseVector(10, 2.0); // Create a preconditioner. The possibilities are: // 1) No preconditioner - Simply do not provide the solver with a preconditioner. // 2) A simple diagonal preconditioner - Create an instance of the Diagonal class. // 3) A ILU preconditioner - Create an instance of the IncompleteLu class. // 4) A ILU preconditioner with pivoting and drop tolerances - Create an instance of the Ilutp class. // Here we'll use the simple diagonal preconditioner. // We need a link to the matrix so the pre-conditioner can do it's work. IPreConditioner preconditioner = new Diagonal(); // Create a new iterator. This checks for convergence of the results of the // iterative matrix solver. // In this case we'll create the default iterator IIterator iterator = Iterator.CreateDefault(); // Create the solver MlkBiCgStab solver = new MlkBiCgStab(preconditioner, iterator); // Now that all is set we can solve the matrix equation. Vector solutionVector = solver.Solve(matrix, rightHandSideVector); // Another way to get the values is by using the overloaded solve method // In this case the solution vector needs to be of the correct size. solver.Solve(matrix, rightHandSideVector, solutionVector); // Finally you can check the reason the solver finished the iterative process // by calling the SolutionStatus property on the iterator ICalculationStatus status = iterator.Status; if (status is CalculationCancelled) Console.WriteLine("The user cancelled the calculation."); if (status is CalculationIndetermined) Console.WriteLine("Oh oh, something went wrong. The iterative process was never started."); if (status is CalculationConverged) Console.WriteLine("Yippee, the iterative process converged."); if (status is CalculationDiverged) Console.WriteLine("I'm sorry the iterative process diverged."); if (status is CalculationFailure) Console.WriteLine("Oh dear, the iterative process failed."); if (status is CalculationStoppedWithoutConvergence) Console.WriteLine("Oh dear, the iterative process did not converge."); }
public void CanSolveForRandomMatrix([Values(4)] int order) { for (var iteration = 5; iteration > 3; iteration--) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order); var monitor = new Iterator(new IIterationStopCriterium[] { new IterationCountStopCriterium(1000), new ResidualStopCriterium((float)Math.Pow(1.0 / 10.0, iteration)) }); var solver = new MlkBiCgStab(monitor); var matrixX = solver.Solve(matrixA, matrixB); if (!(monitor.Status is CalculationConverged)) { // Solution was not found, try again downgrading convergence boundary continue; } // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA * matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, (float)Math.Pow(1.0 / 10.0, iteration - 3)); Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, (float)Math.Pow(1.0 / 10.0, iteration - 3)); } } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void CanSolveForRandomMatrix(int order) { // Due to datatype "float" it can happen that solution will not converge for specific random matrix // That's why we will do 4 tries and downgrade stop criterium each time for (var iteration = 6; iteration > 3; iteration--) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order); var monitor = new Iterator(new IIterationStopCriterium<float>[] { new IterationCountStopCriterium(MaximumIterations), new ResidualStopCriterium((float)Math.Pow(1.0/10.0, iteration)) }); var solver = new MlkBiCgStab(monitor); var matrixX = solver.Solve(matrixA, matrixB); if (!(monitor.Status is CalculationConverged)) { // Solution was not found, try again downgrading convergence boundary continue; } // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA * matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreApproximatelyEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0 / 10.0, iteration - 3)); } } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void CanSolveForRandomMatrix(int order) { // Due to datatype "float" it can happen that solution will not converge for specific random matrix // That's why we will do 4 tries and downgrade stop criterium each time for (var iteration = 6; iteration > 3; iteration--) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order); var monitor = new Iterator(new IIterationStopCriterium <float>[] { new IterationCountStopCriterium(MaximumIterations), new ResidualStopCriterium((float)Math.Pow(1.0 / 10.0, iteration)) }); var solver = new MlkBiCgStab(monitor); var matrixX = solver.Solve(matrixA, matrixB); if (!(monitor.Status is CalculationConverged)) { // Solution was not found, try again downgrading convergence boundary continue; } // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA * matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreApproximatelyEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0 / 10.0, iteration - 3)); } } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void CanSolveForRandomMatrix(int order) { for (var iteration = 5; iteration > 3; iteration--) { var matrixA = Matrix <Complex32> .Build.Random(order, order, 1); var matrixB = Matrix <Complex32> .Build.Random(order, order, 1); var monitor = new Iterator <Complex32>( new IterationCountStopCriterion <Complex32>(1000), new ResidualStopCriterion <Complex32>(Math.Pow(1.0 / 10.0, iteration))); var solver = new MlkBiCgStab(); var matrixX = matrixA.SolveIterative(matrixB, solver, monitor); if (monitor.Status != IterationStatus.Converged) { // Solution was not found, try again downgrading convergence boundary continue; } // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA * matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, (float)Math.Pow(1.0 / 10.0, iteration - 3)); Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, (float)Math.Pow(1.0 / 10.0, iteration - 3)); } } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void CanSolveForRandomMatrix(int order) { // Due to datatype "float" it can happen that solution will not converge for specific random matrix // That's why we will do 4 tries and downgrade stop criterion each time for (var iteration = 6; iteration > 3; iteration--) { var matrixA = Matrix <float> .Build.Random(order, order, 1); var matrixB = Matrix <float> .Build.Random(order, order, 1); var monitor = new Iterator <float>( new IterationCountStopCriterion <float>(MaximumIterations), new ResidualStopCriterion <float>(Math.Pow(1.0 / 10.0, iteration))); var solver = new MlkBiCgStab(); var matrixX = matrixA.SolveIterative(matrixB, solver, monitor); if (monitor.Status != IterationStatus.Converged) { // Solution was not found, try again downgrading convergence boundary continue; } // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA * matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0 / 10.0, iteration - 3)); } } return; } }
public void CanSolveForRandomMatrix(int order) { for (var iteration = 5; iteration > 3; iteration--) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order); var monitor = new Iterator<Complex32>( new IterationCountStopCriterium<Complex32>(1000), new ResidualStopCriterium((float) Math.Pow(1.0/10.0, iteration))); var solver = new MlkBiCgStab(); var matrixX = matrixA.SolveIterative(matrixB, solver, monitor); if (monitor.Status != IterationStatus.Converged) { // Solution was not found, try again downgrading convergence boundary continue; } // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA*matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, (float) Math.Pow(1.0/10.0, iteration - 3)); Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, (float) Math.Pow(1.0/10.0, iteration - 3)); } } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void CanSolveForRandomMatrix(int order) { // Due to datatype "float" it can happen that solution will not converge for specific random matrix // That's why we will do 4 tries and downgrade stop criterion each time for (var iteration = 6; iteration > 3; iteration--) { var matrixA = Matrix<float>.Build.Random(order, order, 1); var matrixB = Matrix<float>.Build.Random(order, order, 1); var monitor = new Iterator<float>( new IterationCountStopCriterion<float>(MaximumIterations), new ResidualStopCriterion<float>(Math.Pow(1.0/10.0, iteration))); var solver = new MlkBiCgStab(); var matrixX = matrixA.SolveIterative(matrixB, solver, monitor); if (monitor.Status != IterationStatus.Converged) { // Solution was not found, try again downgrading convergence boundary continue; } // The solution X row dimension is equal to the column dimension of A Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount); // The solution X has the same number of columns as B Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount); var matrixBReconstruct = matrixA*matrixX; // Check the reconstruction. for (var i = 0; i < matrixB.RowCount; i++) { for (var j = 0; j < matrixB.ColumnCount; j++) { Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0/10.0, iteration - 3)); } } return; } }
public void SolveScaledUnitMatrixAndBackMultiply() { // Create the identity matrix Matrix matrix = SparseMatrix.Identity(100); // Scale it with a funny number matrix.Multiply((float)Math.PI, matrix); // Create the y vector Vector y = DenseVector.Create(matrix.RowCount, i => 1); // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator(new IIterationStopCriterium[] { new IterationCountStopCriterium(MaximumIterations), new ResidualStopCriterium(ConvergenceBoundary), new DivergenceStopCriterium(), new FailureStopCriterium() }); var solver = new MlkBiCgStab(monitor); // Solve equation Ax = y var x = solver.Solve(matrix, y); // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Check that the solution converged Assert.IsTrue(monitor.Status is CalculationConverged, "#04"); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.IsTrue((y[i] - z[i]).IsSmaller(ConvergenceBoundary, 1), "#05-" + i); } }
public void SolveScaledUnitMatrixAndBackMultiply() { // Create the identity matrix var matrix = SparseMatrix.CreateIdentity(100); // Scale it with a funny number matrix.Multiply(Math.PI, matrix); // Create the y vector var y = Vector <Complex> .Build.Dense(matrix.RowCount, 1); // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator <Complex>( new IterationCountStopCriterium <Complex>(MaximumIterations), new ResidualStopCriterium <Complex>(ConvergenceBoundary), new DivergenceStopCriterium <Complex>(), new FailureStopCriterium <Complex>()); var solver = new MlkBiCgStab(); // Solve equation Ax = y var x = matrix.SolveIterative(y, solver, monitor); // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Check that the solution converged Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04"); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.GreaterOrEqual(ConvergenceBoundary, (y[i] - z[i]).Magnitude, "#05-" + i); } }
public void CanSolveForRandomVector(int order) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var vectorb = MatrixLoader.GenerateRandomDenseVector(order); var monitor = new Iterator <double>( new IterationCountStopCriterium <double>(1000), new ResidualStopCriterium <double>(1e-10)); var solver = new MlkBiCgStab(); var resultx = matrixA.SolveIterative(vectorb, solver, monitor); Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA * resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i], matrixBReconstruct[i], 1e-7); } }
public void CanSolveForRandomVector(int order) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var vectorb = MatrixLoader.GenerateRandomDenseVector(order); var monitor = new Iterator(new IIterationStopCriterium<double>[] { new IterationCountStopCriterium(1000), new ResidualStopCriterium(1e-10), }); var solver = new MlkBiCgStab(monitor); var resultx = solver.Solve(matrixA, vectorb); Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var bReconstruct = matrixA * resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreApproximatelyEqual(vectorb[i], bReconstruct[i], 1e-7); } }
public void CanSolveForRandomVector([Values(4)] int order) { for (var iteration = 5; iteration > 3; iteration--) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var vectorb = MatrixLoader.GenerateRandomDenseVector(order); var monitor = new Iterator(new IIterationStopCriterium[] { new IterationCountStopCriterium(1000), new ResidualStopCriterium((float)Math.Pow(1.0 / 10.0, iteration)), }); var solver = new MlkBiCgStab(monitor); var resultx = solver.Solve(matrixA, vectorb); if (!(monitor.Status is CalculationConverged)) { // Solution was not found, try again downgrading convergence boundary continue; } Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA * resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float)Math.Pow(1.0 / 10.0, iteration - 3)); Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float)Math.Pow(1.0 / 10.0, iteration - 3)); } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void CanSolveForRandomVector(int order) { // Due to datatype "float" it can happen that solution will not converge for specific random matrix // That's why we will do 4 tries and downgrade stop criterion each time for (var iteration = 6; iteration > 3; iteration--) { var matrixA = Matrix <float> .Build.Random(order, order, 1); var vectorb = Vector <float> .Build.Random(order, 1); var monitor = new Iterator <float>( new IterationCountStopCriterion <float>(MaximumIterations), new ResidualStopCriterion <float>(Math.Pow(1.0 / 10.0, iteration))); var solver = new MlkBiCgStab(); var resultx = matrixA.SolveIterative(vectorb, solver, monitor); if (monitor.Status != IterationStatus.Converged) { // Solution was not found, try again downgrading convergence boundary continue; } Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA * resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i], matrixBReconstruct[i], (float)Math.Pow(1.0 / 10.0, iteration - 3)); } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void CanSolveForRandomVector(int order) { // Due to datatype "float" it can happen that solution will not converge for specific random matrix // That's why we will do 4 tries and downgrade stop criterium each time for (var iteration = 6; iteration > 3; iteration--) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var vectorb = MatrixLoader.GenerateRandomDenseVector(order); var monitor = new Iterator(new IIterationStopCriterium[] { new IterationCountStopCriterium(MaximumIterations), new ResidualStopCriterium((float)Math.Pow(1.0 / 10.0, iteration)), }); var solver = new MlkBiCgStab(monitor); var resultx = solver.Solve(matrixA, vectorb); if (!(monitor.Status is CalculationConverged)) { // Solution was not found, try again downgrading convergence boundary continue; } Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA * resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i], matrixBReconstruct[i], (float)Math.Pow(1.0 / 10.0, iteration - 3)); } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void CanSolveForRandomVector(int order) { for (var iteration = 5; iteration > 3; iteration--) { var matrixA = Matrix <Complex32> .Build.Random(order, order, 1); var vectorb = Vector <Complex32> .Build.Random(order, 1); var monitor = new Iterator <Complex32>( new IterationCountStopCriterion <Complex32>(1000), new ResidualStopCriterion <Complex32>(Math.Pow(1.0 / 10.0, iteration))); var solver = new MlkBiCgStab(); var resultx = matrixA.SolveIterative(vectorb, solver, monitor); if (monitor.Status != IterationStatus.Converged) { // Solution was not found, try again downgrading convergence boundary continue; } Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA * resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float)Math.Pow(1.0 / 10.0, iteration - 3)); Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float)Math.Pow(1.0 / 10.0, iteration - 3)); } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void SolveLongMatrix() { var matrix = new SparseMatrix(3, 2); Vector<Complex> input = new DenseVector(3); var solver = new MlkBiCgStab(); solver.Solve(matrix, input); }
public void SolvePoissonMatrixAndBackMultiply() { // Create the matrix var matrix = new SparseMatrix(100); // Assemble the matrix. We assume we're solving the Poisson equation // on a rectangular 10 x 10 grid const int GridSize = 10; // The pattern is: // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0 for (var i = 0; i < matrix.RowCount; i++) { // Insert the first set of -1's if (i > (GridSize - 1)) { matrix[i, i - GridSize] = -1; } // Insert the second set of -1's if (i > 0) { matrix[i, i - 1] = -1; } // Insert the centerline values matrix[i, i] = 4; // Insert the first trailing set of -1's if (i < matrix.RowCount - 1) { matrix[i, i + 1] = -1; } // Insert the second trailing set of -1's if (i < matrix.RowCount - GridSize) { matrix[i, i + GridSize] = -1; } } // Create the y vector var y = DenseVector.Create(matrix.RowCount, i => 1); // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator(new IIterationStopCriterium <double>[] { new IterationCountStopCriterium <double>(MaximumIterations), new ResidualStopCriterium(ConvergenceBoundary), new DivergenceStopCriterium(), new FailureStopCriterium() }); var solver = new MlkBiCgStab(monitor); // Solve equation Ax = y var x = solver.Solve(matrix, y); // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Check that the solution converged Assert.IsTrue(monitor.Status is CalculationConverged, "#04"); // Now compare the vectors for (var i = 0; i < y.Count; i++) { #if !PORTABLE Assert.IsTrue(Math.Abs(y[i] - z[i]).IsSmaller(ConvergenceBoundary, 1), "#05-" + i); #else Assert.IsTrue(Math.Abs(y[i] - z[i]).IsSmaller(ConvergenceBoundary * 100.0, 1), "#05-" + i); #endif } }
public void SolveUnitMatrixAndBackMultiply() { // Create the identity matrix Matrix<Complex> matrix = SparseMatrix.Identity(100); // Create the y vector Vector<Complex> y = new DenseVector(matrix.RowCount, 1); // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator(new IIterationStopCriterium<Complex>[] { new IterationCountStopCriterium(MaximumIterations), new ResidualStopCriterium(ConvergenceBoundary), new DivergenceStopCriterium(), new FailureStopCriterium() }); var solver = new MlkBiCgStab(monitor); // Solve equation Ax = y var x = solver.Solve(matrix, y); // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Check that the solution converged Assert.IsTrue(monitor.Status is CalculationConverged, "#04"); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(ConvergenceBoundary, 1), "#05-" + i); } }
public void CanSolveForRandomVector([Values(4, 8, 10)] int order) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var vectorb = MatrixLoader.GenerateRandomDenseVector(order); var monitor = new Iterator(new IIterationStopCriterium[] { new IterationCountStopCriterium(1000), new ResidualStopCriterium(1e-10), }); var solver = new MlkBiCgStab(monitor); var resultx = solver.Solve(matrixA, vectorb); Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA * resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5); Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5); } }
public void SolveUnitMatrixAndBackMultiply() { // Create the identity matrix var matrix = SparseMatrix.CreateIdentity(100); // Create the y vector var y = DenseVector.Create(matrix.RowCount, i => 1); // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator<float>( new IterationCountStopCriterium<float>(MaximumIterations), new ResidualStopCriterium<float>(ConvergenceBoundary), new DivergenceStopCriterium<float>(), new FailureStopCriterium<float>()); var solver = new MlkBiCgStab(); // Solve equation Ax = y var x = matrix.SolveIterative(y, solver, monitor); // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Check that the solution converged Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04"); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.GreaterOrEqual(ConvergenceBoundary, Math.Abs(y[i] - z[i]), "#05-" + i); } }
public void SolvePoissonMatrixAndBackMultiply() { // Create the matrix var matrix = new SparseMatrix(100); // Assemble the matrix. We assume we're solving the Poisson equation // on a rectangular 10 x 10 grid const int GridSize = 10; // The pattern is: // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0 for (var i = 0; i < matrix.RowCount; i++) { // Insert the first set of -1's if (i > (GridSize - 1)) { matrix[i, i - GridSize] = -1; } // Insert the second set of -1's if (i > 0) { matrix[i, i - 1] = -1; } // Insert the centerline values matrix[i, i] = 4; // Insert the first trailing set of -1's if (i < matrix.RowCount - 1) { matrix[i, i + 1] = -1; } // Insert the second trailing set of -1's if (i < matrix.RowCount - GridSize) { matrix[i, i + GridSize] = -1; } } // Create the y vector Vector<Complex> y = new DenseVector(matrix.RowCount, 1); // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator(new IIterationStopCriterium<Complex>[] { new IterationCountStopCriterium(MaximumIterations), new ResidualStopCriterium(ConvergenceBoundary), new DivergenceStopCriterium(), new FailureStopCriterium() }); var solver = new MlkBiCgStab(monitor); // Solve equation Ax = y var x = solver.Solve(matrix, y); // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Check that the solution converged Assert.IsTrue(monitor.Status is CalculationConverged, "#04"); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(ConvergenceBoundary, 1), "#05-" + i); } }
public void CanSolveForRandomVector(int order) { // Due to datatype "float" it can happen that solution will not converge for specific random matrix // That's why we will do 4 tries and downgrade stop criterium each time for (var iteration = 6; iteration > 3; iteration--) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var vectorb = MatrixLoader.GenerateRandomDenseVector(order); var monitor = new Iterator<float>( new IterationCountStopCriterium<float>(MaximumIterations), new ResidualStopCriterium<float>(Math.Pow(1.0 / 10.0, iteration))); var solver = new MlkBiCgStab(); var resultx = matrixA.SolveIterative(vectorb, solver, monitor); if (monitor.Status != IterationStatus.Converged) { // Solution was not found, try again downgrading convergence boundary continue; } Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA*resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i], matrixBReconstruct[i], (float) Math.Pow(1.0/10.0, iteration - 3)); } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void SolveScaledUnitMatrixAndBackMultiply() { // Create the identity matrix var matrix = SparseMatrix.Identity(100); // Scale it with a funny number matrix.Multiply(Math.PI, matrix); // Create the y vector var y = DenseVector.Create(matrix.RowCount, i => 1); // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator<double>(new IIterationStopCriterium<double>[] { new IterationCountStopCriterium<double>(MaximumIterations), new ResidualStopCriterium(ConvergenceBoundary), new DivergenceStopCriterium(), new FailureStopCriterium() }); var solver = new MlkBiCgStab(monitor); // Solve equation Ax = y var x = solver.Solve(matrix, y); // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Check that the solution converged Assert.IsTrue(monitor.HasConverged, "#04"); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.IsTrue((y[i] - z[i]).IsSmaller(ConvergenceBoundary, 1), "#05-" + i); } }
public void CanSolveForRandomVector(int order) { for (var iteration = 5; iteration > 3; iteration--) { var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order); var vectorb = MatrixLoader.GenerateRandomDenseVector(order); var monitor = new Iterator<Complex32>(new IIterationStopCriterium<Complex32>[] { new IterationCountStopCriterium<Complex32>(1000), new ResidualStopCriterium((float) Math.Pow(1.0/10.0, iteration)) }); var solver = new MlkBiCgStab(monitor); var resultx = solver.Solve(matrixA, vectorb); if (!monitor.HasConverged) { // Solution was not found, try again downgrading convergence boundary continue; } Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA*resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float) Math.Pow(1.0/10.0, iteration - 3)); Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float) Math.Pow(1.0/10.0, iteration - 3)); } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void SolvePoissonMatrixAndBackMultiply() { // Create the matrix var matrix = new SparseMatrix(25); // Assemble the matrix. We assume we're solving the Poisson equation // on a rectangular 5 x 5 grid const int GridSize = 5; // The pattern is: // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0 for (var i = 0; i < matrix.RowCount; i++) { // Insert the first set of -1's if (i > (GridSize - 1)) { matrix[i, i - GridSize] = -1; } // Insert the second set of -1's if (i > 0) { matrix[i, i - 1] = -1; } // Insert the centerline values matrix[i, i] = 4; // Insert the first trailing set of -1's if (i < matrix.RowCount - 1) { matrix[i, i + 1] = -1; } // Insert the second trailing set of -1's if (i < matrix.RowCount - GridSize) { matrix[i, i + GridSize] = -1; } } // Create the y vector var y = DenseVector.Create(matrix.RowCount, i => 1); // Due to datatype "float" it can happen that solution will not converge for specific random starting vectors // That's why we will do 3 tries for (var iteration = 0; iteration <= 3; iteration++) { // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator<float>( new IterationCountStopCriterium<float>(MaximumIterations), new ResidualStopCriterium<float>(ConvergenceBoundary), new DivergenceStopCriterium<float>(), new FailureStopCriterium<float>()); var solver = new MlkBiCgStab(); // Solve equation Ax = y Vector<float> x; try { x = matrix.SolveIterative(y, solver, monitor); } catch (Exception) { continue; } if (monitor.Status != IterationStatus.Converged) { continue; } // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.GreaterOrEqual(ConvergenceBoundary, Math.Abs(y[i] - z[i]), "#05-" + i); } return; } }
public void CanSolveForRandomVector(int order) { var matrixA = Matrix<double>.Build.Random(order, order, 1); var vectorb = Vector<double>.Build.Random(order, 1); var monitor = new Iterator<double>( new IterationCountStopCriterion<double>(1000), new ResidualStopCriterion<double>(1e-10)); var solver = new MlkBiCgStab(); var resultx = matrixA.SolveIterative(vectorb, solver, monitor); Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA*resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i], matrixBReconstruct[i], 1e-7); } }
public void SolvePoissonMatrixAndBackMultiply() { // Create the matrix var matrix = Matrix<double>.Build.Sparse(100, 100); // Assemble the matrix. We assume we're solving the Poisson equation // on a rectangular 10 x 10 grid const int GridSize = 10; // The pattern is: // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0 for (var i = 0; i < matrix.RowCount; i++) { // Insert the first set of -1's if (i > (GridSize - 1)) { matrix[i, i - GridSize] = -1; } // Insert the second set of -1's if (i > 0) { matrix[i, i - 1] = -1; } // Insert the centerline values matrix[i, i] = 4; // Insert the first trailing set of -1's if (i < matrix.RowCount - 1) { matrix[i, i + 1] = -1; } // Insert the second trailing set of -1's if (i < matrix.RowCount - GridSize) { matrix[i, i + GridSize] = -1; } } // Create the y vector var y = Vector<double>.Build.Dense(matrix.RowCount, 1); // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator<double>( new IterationCountStopCriterion<double>(MaximumIterations), new ResidualStopCriterion<double>(ConvergenceBoundary), new DivergenceStopCriterion<double>(), new FailureStopCriterion<double>()); var solver = new MlkBiCgStab(); // Solve equation Ax = y var x = matrix.SolveIterative(y, solver, monitor); // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Check that the solution converged Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04"); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.GreaterOrEqual(ConvergenceBoundary, Math.Abs(y[i] - z[i]), "#05-" + i); } }
public void SolvePoissonMatrixAndBackMultiply() { // Create the matrix var matrix = new SparseMatrix(100); // Assemble the matrix. We assume we're solving the Poisson equation // on a rectangular 10 x 10 grid const int GridSize = 10; // The pattern is: // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0 for (var i = 0; i < matrix.RowCount; i++) { // Insert the first set of -1's if (i > (GridSize - 1)) { matrix[i, i - GridSize] = -1; } // Insert the second set of -1's if (i > 0) { matrix[i, i - 1] = -1; } // Insert the centerline values matrix[i, i] = 4; // Insert the first trailing set of -1's if (i < matrix.RowCount - 1) { matrix[i, i + 1] = -1; } // Insert the second trailing set of -1's if (i < matrix.RowCount - GridSize) { matrix[i, i + GridSize] = -1; } } // Create the y vector var y = Vector <Complex> .Build.Dense(matrix.RowCount, 1); // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator <Complex>( new IterationCountStopCriterium <Complex>(MaximumIterations), new ResidualStopCriterium <Complex>(ConvergenceBoundary), new DivergenceStopCriterium <Complex>(), new FailureStopCriterium <Complex>()); var solver = new MlkBiCgStab(); // Solve equation Ax = y var x = matrix.SolveIterative(y, solver, monitor); // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Check that the solution converged Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04"); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.GreaterOrEqual(ConvergenceBoundary, (y[i] - z[i]).Magnitude, "#05-" + i); } }
public void CanSolveForRandomVector(int order) { for (var iteration = 5; iteration > 3; iteration--) { var matrixA = Matrix<Complex32>.Build.Random(order, order, 1); var vectorb = Vector<Complex32>.Build.Random(order, 1); var monitor = new Iterator<Complex32>( new IterationCountStopCriterion<Complex32>(1000), new ResidualStopCriterion<Complex32>(Math.Pow(1.0/10.0, iteration))); var solver = new MlkBiCgStab(); var resultx = matrixA.SolveIterative(vectorb, solver, monitor); if (monitor.Status != IterationStatus.Converged) { // Solution was not found, try again downgrading convergence boundary continue; } Assert.AreEqual(matrixA.ColumnCount, resultx.Count); var matrixBReconstruct = matrixA*resultx; // Check the reconstruction. for (var i = 0; i < order; i++) { Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float)Math.Pow(1.0/10.0, iteration - 3)); Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float)Math.Pow(1.0/10.0, iteration - 3)); } return; } Assert.Fail("Solution was not found in 3 tries"); }
public void SolvePoissonMatrixAndBackMultiply() { // Create the matrix var matrix = new SparseMatrix(25); // Assemble the matrix. We assume we're solving the Poisson equation // on a rectangular 5 x 5 grid const int GridSize = 5; // The pattern is: // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0 for (var i = 0; i < matrix.RowCount; i++) { // Insert the first set of -1's if (i > (GridSize - 1)) { matrix[i, i - GridSize] = -1; } // Insert the second set of -1's if (i > 0) { matrix[i, i - 1] = -1; } // Insert the centerline values matrix[i, i] = 4; // Insert the first trailing set of -1's if (i < matrix.RowCount - 1) { matrix[i, i + 1] = -1; } // Insert the second trailing set of -1's if (i < matrix.RowCount - GridSize) { matrix[i, i + GridSize] = -1; } } // Create the y vector Vector y = DenseVector.Create(matrix.RowCount, i => 1); // Due to datatype "float" it can happen that solution will not converge for specific random starting vectors // That's why we will do 3 tries for (var iteration = 0; iteration <= 3; iteration++) { // Create an iteration monitor which will keep track of iterative convergence var monitor = new Iterator(new IIterationStopCriterium[] { new IterationCountStopCriterium(MaximumIterations), new ResidualStopCriterium(ConvergenceBoundary), new DivergenceStopCriterium(), new FailureStopCriterium() }); var solver = new MlkBiCgStab(monitor); // Solve equation Ax = y Vector x; try { x = solver.Solve(matrix, y); } catch (Exception) { continue; } if (!(monitor.Status is CalculationConverged)) { continue; } // Now compare the results Assert.IsNotNull(x, "#02"); Assert.AreEqual(y.Count, x.Count, "#03"); // Back multiply the vector var z = matrix.Multiply(x); // Now compare the vectors for (var i = 0; i < y.Count; i++) { Assert.IsTrue(Math.Abs(y[i] - z[i]).IsSmaller(ConvergenceBoundary, 1), "#04-" + i); } return; } }
public void SolveWideMatrix() { var matrix = new SparseMatrix(2, 3); Vector<float> input = new DenseVector(2); var solver = new MlkBiCgStab(); solver.Solve(matrix, input); }
/// <summary> /// Run example /// </summary> public void Run() { // Format matrix output to console var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone(); formatProvider.TextInfo.ListSeparator = " "; // Solve next system of linear equations (Ax=b): // 5*x + 2*y - 4*z = -7 // 3*x - 7*y + 6*z = 38 // 4*x + 1*y + 5*z = 43 // Create matrix "A" with coefficients var matrixA = DenseMatrix.OfArray(new[,] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } }); Console.WriteLine(@"Matrix 'A' with coefficients"); Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // Create vector "b" with the constant terms. var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 }); Console.WriteLine(@"Vector 'b' with the constant terms"); Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // Create stop criteria to monitor an iterative calculation. There are next available stop criteria: // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence; // - FailureStopCriterion: monitors residuals for NaN's; // - IterationCountStopCriterion: monitors the numbers of iteration steps; // - ResidualStopCriterion: monitors residuals if calculation is considered converged; // Stop calculation if 1000 iterations reached during calculation var iterationCountStopCriterion = new IterationCountStopCriterion<double>(1000); // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged var residualStopCriterion = new ResidualStopCriterion<double>(1e-10); // Create monitor with defined stop criteria var monitor = new Iterator<double>(iterationCountStopCriterion, residualStopCriterion); // Create Multiple-Lanczos Bi-Conjugate Gradient Stabilized solver var solver = new MlkBiCgStab(); // 1. Solve the matrix equation var resultX = matrixA.SolveIterative(vectorB, solver, monitor); Console.WriteLine(@"1. Solve the matrix equation"); Console.WriteLine(); // 2. Check solver status of the iterations. // Solver has property IterationResult which contains the status of the iteration once the calculation is finished. // Possible values are: // - CalculationCancelled: calculation was cancelled by the user; // - CalculationConverged: calculation has converged to the desired convergence levels; // - CalculationDiverged: calculation diverged; // - CalculationFailure: calculation has failed for some reason; // - CalculationIndetermined: calculation is indetermined, not started or stopped; // - CalculationRunning: calculation is running and no results are yet known; // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved; Console.WriteLine(@"2. Solver status of the iterations"); Console.WriteLine(monitor.Status); Console.WriteLine(); // 3. Solution result vector of the matrix equation Console.WriteLine(@"3. Solution result vector of the matrix equation"); Console.WriteLine(resultX.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 4. Verify result. Multiply coefficient matrix "A" by result vector "x" var reconstructVecorB = matrixA*resultX; Console.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'"); Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider)); Console.WriteLine(); }
/// <summary> /// Run example /// </summary> public void Run() { // Format matrix output to console var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone(); formatProvider.TextInfo.ListSeparator = " "; // Solve next system of linear equations (Ax=b): // 5*x + 2*y - 4*z = -7 // 3*x - 7*y + 6*z = 38 // 4*x + 1*y + 5*z = 43 // Create matrix "A" with coefficients var matrixA = DenseMatrix.OfArray(new[, ] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } }); Console.WriteLine(@"Matrix 'A' with coefficients"); Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // Create vector "b" with the constant terms. var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 }); Console.WriteLine(@"Vector 'b' with the constant terms"); Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // Create stop criteriums to monitor an iterative calculation. There are next available stop criteriums: // - DivergenceStopCriterium: monitors an iterative calculation for signs of divergence; // - FailureStopCriterium: monitors residuals for NaN's; // - IterationCountStopCriterium: monitors the numbers of iteration steps; // - ResidualStopCriterium: monitors residuals if calculation is considered converged; // Stop calculation if 1000 iterations reached during calculation var iterationCountStopCriterium = new IterationCountStopCriterium <double>(1000); // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged var residualStopCriterium = new ResidualStopCriterium(1e-10); // Create monitor with defined stop criteriums var monitor = new Iterator(new IIterationStopCriterium <double>[] { iterationCountStopCriterium, residualStopCriterium }); // Create Multiple-Lanczos Bi-Conjugate Gradient Stabilized solver var solver = new MlkBiCgStab(monitor); // 1. Solve the matrix equation var resultX = solver.Solve(matrixA, vectorB); Console.WriteLine(@"1. Solve the matrix equation"); Console.WriteLine(); // 2. Check solver status of the iterations. // Solver has property IterationResult which contains the status of the iteration once the calculation is finished. // Possible values are: // - CalculationCancelled: calculation was cancelled by the user; // - CalculationConverged: calculation has converged to the desired convergence levels; // - CalculationDiverged: calculation diverged; // - CalculationFailure: calculation has failed for some reason; // - CalculationIndetermined: calculation is indetermined, not started or stopped; // - CalculationRunning: calculation is running and no results are yet known; // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved; Console.WriteLine(@"2. Solver status of the iterations"); Console.WriteLine(solver.IterationResult); Console.WriteLine(); // 3. Solution result vector of the matrix equation Console.WriteLine(@"3. Solution result vector of the matrix equation"); Console.WriteLine(resultX.ToString("#0.00\t", formatProvider)); Console.WriteLine(); // 4. Verify result. Multiply coefficient matrix "A" by result vector "x" var reconstructVecorB = matrixA * resultX; Console.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'"); Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider)); Console.WriteLine(); }
public override void ExecuteExample() { // <seealso cref="http://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method">Biconjugate gradient stabilized method</seealso> MathDisplay.WriteLine("<b>Biconjugate gradient stabilised iterative solver</b>"); // Format matrix output to console var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone(); formatProvider.TextInfo.ListSeparator = " "; // Solve next system of linear equations (Ax=b): // 5*x + 2*y - 4*z = -7 // 3*x - 7*y + 6*z = 38 // 4*x + 1*y + 5*z = 43 // Create matrix "A" with coefficients var matrixA = DenseMatrix.OfArray(new[, ] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } }); MathDisplay.WriteLine(@"Matrix 'A' with coefficients"); MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create vector "b" with the constant terms. var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 }); MathDisplay.WriteLine(@"Vector 'b' with the constant terms"); MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create stop criteria to monitor an iterative calculation. There are next available stop criteria: // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence; // - FailureStopCriterion: monitors residuals for NaN's; // - IterationCountStopCriterion: monitors the numbers of iteration steps; // - ResidualStopCriterion: monitors residuals if calculation is considered converged; // Stop calculation if 1000 iterations reached during calculation var iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000); // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged var residualStopCriterion = new ResidualStopCriterion <double>(1e-10); // Create monitor with defined stop criteria var monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion); // Create Bi-Conjugate Gradient Stabilized solver var solverBiCgStab = new BiCgStab(); // 1. Solve the matrix equation var resultX = matrixA.SolveIterative(vectorB, solverBiCgStab, monitor); MathDisplay.WriteLine(@"1. Solve the matrix equation"); MathDisplay.WriteLine(); // 2. Check solver status of the iterations. // Solver has property IterationResult which contains the status of the iteration once the calculation is finished. // Possible values are: // - CalculationCancelled: calculation was cancelled by the user; // - CalculationConverged: calculation has converged to the desired convergence levels; // - CalculationDiverged: calculation diverged; // - CalculationFailure: calculation has failed for some reason; // - CalculationIndetermined: calculation is indetermined, not started or stopped; // - CalculationRunning: calculation is running and no results are yet known; // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved; MathDisplay.WriteLine(@"2. Solver status of the iterations"); MathDisplay.WriteLine(monitor.Status.ToString()); MathDisplay.WriteLine(); // 3. Solution result vector of the matrix equation MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation"); MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // 4. Verify result. Multiply coefficient matrix "A" by result vector "x" var reconstructVecorB = matrixA * resultX; MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'"); MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); MathDisplay.WriteLine("<b>Generalized product biconjugate gradient solver</b>"); // Solve next system of linear equations (Ax=b): // 5*x + 2*y - 4*z = -7 // 3*x - 7*y + 6*z = 38 // 4*x + 1*y + 5*z = 43 // Create matrix "A" with coefficients matrixA = DenseMatrix.OfArray(new[, ] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } }); MathDisplay.WriteLine(@"Matrix 'A' with coefficients"); MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create vector "b" with the constant terms. vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 }); MathDisplay.WriteLine(@"Vector 'b' with the constant terms"); MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create stop criteria to monitor an iterative calculation. There are next available stop criteria: // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence; // - FailureStopCriterion: monitors residuals for NaN's; // - IterationCountStopCriterion: monitors the numbers of iteration steps; // - ResidualStopCriterion: monitors residuals if calculation is considered converged; // Stop calculation if 1000 iterations reached during calculation iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000); // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged residualStopCriterion = new ResidualStopCriterion <double>(1e-10); // Create monitor with defined stop criteria monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion); // Create Generalized Product Bi-Conjugate Gradient solver var solverGpBiCg = new GpBiCg(); // 1. Solve the matrix equation resultX = matrixA.SolveIterative(vectorB, solverGpBiCg, monitor); MathDisplay.WriteLine(@"1. Solve the matrix equation"); MathDisplay.WriteLine(); // 2. Check solver status of the iterations. // Solver has property IterationResult which contains the status of the iteration once the calculation is finished. // Possible values are: // - CalculationCancelled: calculation was cancelled by the user; // - CalculationConverged: calculation has converged to the desired convergence levels; // - CalculationDiverged: calculation diverged; // - CalculationFailure: calculation has failed for some reason; // - CalculationIndetermined: calculation is indetermined, not started or stopped; // - CalculationRunning: calculation is running and no results are yet known; // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved; MathDisplay.WriteLine(@"2. Solver status of the iterations"); MathDisplay.WriteLine(monitor.Status.ToString()); MathDisplay.WriteLine(); // 3. Solution result vector of the matrix equation MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation"); MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // 4. Verify result. Multiply coefficient matrix "A" by result vector "x" reconstructVecorB = matrixA * resultX; MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'"); MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); MathDisplay.WriteLine("<b>Composite linear equation solver</b>"); // Solve next system of linear equations (Ax=b): // 5*x + 2*y - 4*z = -7 // 3*x - 7*y + 6*z = 38 // 4*x + 1*y + 5*z = 43 // Create matrix "A" with coefficients matrixA = DenseMatrix.OfArray(new[, ] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } }); MathDisplay.WriteLine(@"Matrix 'A' with coefficients"); MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create vector "b" with the constant terms. vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 }); MathDisplay.WriteLine(@"Vector 'b' with the constant terms"); MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create stop criteria to monitor an iterative calculation. There are next available stop criteria: // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence; // - FailureStopCriterion: monitors residuals for NaN's; // - IterationCountStopCriterion: monitors the numbers of iteration steps; // - ResidualStopCriterion: monitors residuals if calculation is considered converged; // Stop calculation if 1000 iterations reached during calculation iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000); // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged residualStopCriterion = new ResidualStopCriterion <double>(1e-10); // Create monitor with defined stop criteria monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion); // Load all suitable solvers from current assembly. Below (see UserBiCgStab) there is a custom user-defined solver // "class UserBiCgStab : IIterativeSolverSetup<double>" which derives from the regular BiCgStab solver. However users can // create any other solver and solver setup classes that implement IIterativeSolverSetup<T> and load the assembly that // contains them using the following function: var solverComp = new CompositeSolver(SolverSetup <double> .LoadFromAssembly(Assembly.GetExecutingAssembly())); // 1. Solve the linear system resultX = matrixA.SolveIterative(vectorB, solverComp, monitor); MathDisplay.WriteLine(@"1. Solve the matrix equation"); MathDisplay.WriteLine(); // 2. Check solver status of the iterations. // Solver has property IterationResult which contains the status of the iteration once the calculation is finished. // Possible values are: // - CalculationCancelled: calculation was cancelled by the user; // - CalculationConverged: calculation has converged to the desired convergence levels; // - CalculationDiverged: calculation diverged; // - CalculationFailure: calculation has failed for some reason; // - CalculationIndetermined: calculation is indetermined, not started or stopped; // - CalculationRunning: calculation is running and no results are yet known; // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved; MathDisplay.WriteLine(@"2. Solver status of the iterations"); MathDisplay.WriteLine(monitor.Status.ToString()); MathDisplay.WriteLine(); // 3. Solution result vector of the matrix equation MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation"); MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // 4. Verify result. Multiply coefficient matrix "A" by result vector "x" reconstructVecorB = matrixA * resultX; MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'"); MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); MathDisplay.WriteLine("<b>Multiple-Lanczos biconjugate gradient stabilised iterative solver</b>"); // Solve next system of linear equations (Ax=b): // 5*x + 2*y - 4*z = -7 // 3*x - 7*y + 6*z = 38 // 4*x + 1*y + 5*z = 43 // Create matrix "A" with coefficients matrixA = DenseMatrix.OfArray(new[, ] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } }); MathDisplay.WriteLine(@"Matrix 'A' with coefficients"); MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create vector "b" with the constant terms. vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 }); MathDisplay.WriteLine(@"Vector 'b' with the constant terms"); MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create stop criteria to monitor an iterative calculation. There are next available stop criteria: // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence; // - FailureStopCriterion: monitors residuals for NaN's; // - IterationCountStopCriterion: monitors the numbers of iteration steps; // - ResidualStopCriterion: monitors residuals if calculation is considered converged; // Stop calculation if 1000 iterations reached during calculation iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000); // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged residualStopCriterion = new ResidualStopCriterion <double>(1e-10); // Create monitor with defined stop criteria monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion); // Create Multiple-Lanczos Bi-Conjugate Gradient Stabilized solver var solverLanczos = new MlkBiCgStab(); // 1. Solve the matrix equation resultX = matrixA.SolveIterative(vectorB, solverLanczos, monitor); MathDisplay.WriteLine(@"1. Solve the matrix equation"); MathDisplay.WriteLine(); // 2. Check solver status of the iterations. // Solver has property IterationResult which contains the status of the iteration once the calculation is finished. // Possible values are: // - CalculationCancelled: calculation was cancelled by the user; // - CalculationConverged: calculation has converged to the desired convergence levels; // - CalculationDiverged: calculation diverged; // - CalculationFailure: calculation has failed for some reason; // - CalculationIndetermined: calculation is indetermined, not started or stopped; // - CalculationRunning: calculation is running and no results are yet known; // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved; MathDisplay.WriteLine(@"2. Solver status of the iterations"); MathDisplay.WriteLine(monitor.Status.ToString()); MathDisplay.WriteLine(); // 3. Solution result vector of the matrix equation MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation"); MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // 4. Verify result. Multiply coefficient matrix "A" by result vector "x" reconstructVecorB = matrixA * resultX; MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'"); MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); MathDisplay.WriteLine("<b>Transpose freee quasi-minimal residual iterative solver</b>"); // Solve next system of linear equations (Ax=b): // 5*x + 2*y - 4*z = -7 // 3*x - 7*y + 6*z = 38 // 4*x + 1*y + 5*z = 43 // Create matrix "A" with coefficients matrixA = DenseMatrix.OfArray(new[, ] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } }); MathDisplay.WriteLine(@"Matrix 'A' with coefficients"); MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create vector "b" with the constant terms. vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 }); MathDisplay.WriteLine(@"Vector 'b' with the constant terms"); MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // Create stop criteria to monitor an iterative calculation. There are next available stop criteria: // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence; // - FailureStopCriterion: monitors residuals for NaN's; // - IterationCountStopCriterion: monitors the numbers of iteration steps; // - ResidualStopCriterion: monitors residuals if calculation is considered converged; // Stop calculation if 1000 iterations reached during calculation iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000); // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged residualStopCriterion = new ResidualStopCriterion <double>(1e-10); // Create monitor with defined stop criteria monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion); // Create Transpose Free Quasi-Minimal Residual solver var solverTFQMR = new TFQMR(); // 1. Solve the matrix equation resultX = matrixA.SolveIterative(vectorB, solverTFQMR, monitor); MathDisplay.WriteLine(@"1. Solve the matrix equation"); MathDisplay.WriteLine(); // 2. Check solver status of the iterations. // Solver has property IterationResult which contains the status of the iteration once the calculation is finished. // Possible values are: // - CalculationCancelled: calculation was cancelled by the user; // - CalculationConverged: calculation has converged to the desired convergence levels; // - CalculationDiverged: calculation diverged; // - CalculationFailure: calculation has failed for some reason; // - CalculationIndetermined: calculation is indetermined, not started or stopped; // - CalculationRunning: calculation is running and no results are yet known; // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved; MathDisplay.WriteLine(@"2. Solver status of the iterations"); MathDisplay.WriteLine(monitor.Status.ToString()); MathDisplay.WriteLine(); // 3. Solution result vector of the matrix equation MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation"); MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); // 4. Verify result. Multiply coefficient matrix "A" by result vector "x" reconstructVecorB = matrixA * resultX; MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'"); MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider)); MathDisplay.WriteLine(); }