Пример #1
0
        /// <summary>
        /// Performs a principal component analysis of the data.
        /// </summary>
        /// <returns>The result of the principal component analysis.</returns>
        /// <exception cref="InsufficientDataException">The number of data entries (<see cref="Count"/>) is
        /// less than the number of variables (<see cref="Dimension"/>).</exception>
        /// <seealso cref="PrincipalComponentAnalysis"/>
        public PrincipalComponentAnalysis PrincipalComponentAnalysis()
        {
            if (Count < Dimension)
            {
                throw new InsufficientDataException();
            }

            // construct a (Count X Dimension) matrix of mean-centered data
            double[] store = MatrixAlgorithms.AllocateStorage(Count, Dimension);
            int      i     = 0;

            for (int c = 0; c < Dimension; c++)
            {
                double mu = storage[c].Mean;
                for (int r = 0; r < Count; r++)
                {
                    store[i] = storage[c][r] - mu;
                    i++;
                }
            }

            // bidiagonalize it
            double[] a, b;
            MatrixAlgorithms.Bidiagonalize(store, Count, Dimension, out a, out b);

            // form the U and V matrices
            double[] left  = MatrixAlgorithms.AccumulateBidiagonalU(store, Count, Dimension);
            double[] right = MatrixAlgorithms.AccumulateBidiagonalV(store, Count, Dimension);

            // find the singular values of the bidiagonal matrix
            MatrixAlgorithms.ExtractSingularValues(a, b, left, right, Count, Dimension);

            // sort them
            MatrixAlgorithms.SortValues(a, left, right, Count, Dimension);

            PrincipalComponentAnalysis pca = new PrincipalComponentAnalysis(left, a, right, Count, Dimension);

            return(pca);
        }
Пример #2
0
        public void McElieseGenericFormTest(int n, int k, int d, int t, int fieldPower, MatrixInt message, MatrixInt errorVector, MatrixInt scrambler, int[] permutation, int[] mask)
        {
            var galoisField = new GaloisField(2, fieldPower);
            var generator   = new ParityCheckMatrixGeneratorEllyptic(2);
            var linearCode  = new LinearCode(n, k, d, t, galoisField);

            while (true)
            {
                linearCode.ParityCheckMatrix = generator.Generate(linearCode);

                if (Helper.Weight(linearCode.ParityCheckMatrix) < Math.Ceiling(linearCode.ParityCheckMatrix.RowCount * linearCode.ParityCheckMatrix.ColumnCount * 0.7))
                {
                    continue;
                }

                try
                {
                    linearCode.GeneratorMatrix = GeneratorMatrixCalculator.CalculateGeneratorMatrixAlt(linearCode);
                }
                catch (LinearCodeException ex)
                {
                    Console.WriteLine(ex.Message);
                    continue;
                }

                if (Helper.Weight(MatrixAlgorithms.DotMultiplication(linearCode.GeneratorMatrix, linearCode.ParityCheckMatrix.Transpose(), galoisField)) == 0)
                {
                    linearCode.GeneratorMatrix = linearCode.GeneratorMatrix;
                    break;
                }
            }

            var crytptogram      = McElieseGenericForm.Encrypt(linearCode, scrambler, permutation, mask, generator, message, errorVector);
            var decryptedMessage = McElieseGenericForm.Decrypt(linearCode, permutation, mask, scrambler, generator, crytptogram);

            Assert.True(message == decryptedMessage);
        }
Пример #3
0
        public static MatrixInt Encrypt(ILinearCode linearCode, MatrixInt scramblerMatrix, IList <int> permutation, IList <int> mask, ParityCheckMatrixGeneratorEllyptic generator, MatrixInt message, MatrixInt errorVector)
        {
            var encryptionMatrix = MatrixAlgorithms.DotMultiplication(scramblerMatrix, linearCode.GeneratorMatrix, linearCode.GaloisField);

            Debug.WriteLine(encryptionMatrix);
            encryptionMatrix = encryptionMatrix.PermuteColumns(permutation);
            Debug.WriteLine(encryptionMatrix);
            for (int col = 0; col < encryptionMatrix.ColumnCount; col++)
            {
                for (int row = 0; row < encryptionMatrix.RowCount; row++)
                {
                    encryptionMatrix[row, col] = linearCode.GaloisField.MultiplyWords(encryptionMatrix[row, col], mask[col]);
                }
            }
            Debug.WriteLine(encryptionMatrix);

            var encryptedMessage = MatrixAlgorithms.DotMultiplication(message, encryptionMatrix, linearCode.GaloisField);

            for (int i = 0; i < encryptedMessage.ColumnCount; i++)
            {
                encryptedMessage[0, i] = linearCode.GaloisField.AddWords(encryptedMessage[0, i], errorVector[0, i]);
            }
            return(encryptedMessage);
        }
Пример #4
0
 public MatrixInt Encode(MatrixInt message)
 {
     return(MatrixAlgorithms.DotMultiplication(message, GeneratorMatrix, GaloisField));
 }
Пример #5
0
        private bool IsGeneratorMatrixValid(MatrixInt generatorMatrix, MatrixInt parityCheckMatrix, GaloisField galoisField)
        {
            var result = MatrixAlgorithms.DotMultiplication(generatorMatrix, parityCheckMatrix.Transpose(), galoisField);

            return(Helper.Weight(result) == 0);
        }
Пример #6
0
        /// <summary>
        /// Performs a principal component analysis of the multivariate sample.
        /// </summary>
        /// <returns>The result of the principal component analysis.</returns>
        /// <param name="columns">The set of columns to analyze.</param>
        /// <exception cref="ArgumentNullException"><paramref name="columns"/> or one of its members is <see langword="null"/>.</exception>
        /// <exception cref="DimensionMismatchException">The columns do not all have the same number of entries.</exception>
        /// <exception cref="InsufficientDataException">The number of entries is less than the number of columns.</exception>
        /// <remarks>
        /// <para>For background on principal component analysis, see the remarks at <see cref="Meta.Numerics.Statistics.PrincipalComponentAnalysis"/>.</para>
        /// <para>Note that the <paramref name="columns"/> argument is column-oriented, i.e. it is a list of columns,
        /// not row-oriented, i.e. a list of rows. Either of these would match the method signature, but only
        /// column-oriented inputs will produce correct results.</para>
        /// </remarks>
        /// <exception cref="ArgumentNullException"><paramref name="columns"/>, or one of the columns in it, is <see langword="null"/>.</exception>
        /// <exception cref="DimensionMismatchException">Not all of the columns in <paramref name="columns"/> have the same length.</exception>
        /// <exception cref="InsufficientDataException">There are fewer rows than columns.</exception>
        /// <seealso href="https://en.wikipedia.org/wiki/Principal_component_analysis"/>
        public static PrincipalComponentAnalysis PrincipalComponentAnalysis(this IReadOnlyList <IReadOnlyList <double> > columns)
        {
            if (columns == null)
            {
                throw new ArgumentNullException(nameof(columns));
            }

            int dimension = columns.Count;
            int count     = -1;

            for (int c = 0; c < dimension; c++)
            {
                IReadOnlyList <double> column = columns[c];
                if (column == null)
                {
                    throw new ArgumentNullException(nameof(columns));
                }
                if (count < 0)
                {
                    count = column.Count;
                }
                else
                {
                    if (column.Count != count)
                    {
                        throw new DimensionMismatchException();
                    }
                }
            }

            if (count < dimension)
            {
                throw new InsufficientDataException();
            }

            // construct a (Count X Dimension) matrix of mean-centered data
            double[] store = MatrixAlgorithms.AllocateStorage(count, dimension);
            int      i     = 0;

            for (int c = 0; c < dimension; c++)
            {
                IReadOnlyList <double> column = columns[c];
                double mu = column.Mean();
                for (int r = 0; r < count; r++)
                {
                    store[i] = column[r] - mu;
                    i++;
                }
            }

            // bidiagonalize it
            double[] a, b;
            MatrixAlgorithms.Bidiagonalize(store, count, dimension, out a, out b);

            // form the U and V matrices
            double[] left  = MatrixAlgorithms.AccumulateBidiagonalU(store, count, dimension);
            double[] right = MatrixAlgorithms.AccumulateBidiagonalV(store, count, dimension);

            // find the singular values of the bidiagonal matrix
            MatrixAlgorithms.ExtractSingularValues(a, b, left, right, count, dimension);

            // sort them
            MatrixAlgorithms.SortValues(a, left, right, count, dimension);

            PrincipalComponentAnalysis pca = new PrincipalComponentAnalysis(left, a, right, count, dimension);

            return(pca);
        }
Пример #7
0
        public McElieseEllyptic(int n, int k, int d, int t, GaloisField galoisField, MatrixInt scramblerMatrix = null, IList <int> permutation = null, IList <int> mask = null)
        {
            _generator = new ParityCheckMatrixGeneratorEllyptic(2);
            LinearCode = new LinearCode(n, k, d, t, galoisField);

            MatrixInt parityCheckMatrix = null;
            MatrixInt generatorMatrix   = null;

            while (true)
            {
                parityCheckMatrix            = _generator.Generate(LinearCode);
                LinearCode.ParityCheckMatrix = parityCheckMatrix;
                Debug.WriteLine(parityCheckMatrix);

                var minValueFillPercentage = 0.7;

                if (Helper.Weight(parityCheckMatrix) < Math.Ceiling(parityCheckMatrix.RowCount * parityCheckMatrix.ColumnCount * minValueFillPercentage))
                {
                    continue;
                }

                try
                {
                    generatorMatrix = GeneratorMatrixCalculator.CalculateGeneratorMatrixAlt(LinearCode);
                    Debug.WriteLine(generatorMatrix);
                }
                catch (LinearCodeException ex)
                {
                    Debug.WriteLine(ex.Message);
                    continue;
                }

                if (IsGeneratorMatrixValid(parityCheckMatrix, generatorMatrix, galoisField))
                {
                    LinearCode.GeneratorMatrix = generatorMatrix;
                    break;
                }
            }
            if (scramblerMatrix is null)
            {
                scramblerMatrix = Helper.GenerateScramblerMatrix(LinearCode.K);
                while (true)
                {
                    try
                    {
                        MatrixAlgorithms.MatrixInverse(scramblerMatrix, galoisField);
                        break;
                    }
                    catch (SolveMatrixException)
                    {
                        Debug.WriteLine("Reattempting to generate scrambler matrix");
                    }
                }
            }
            if (permutation is null)
            {
                permutation = Helper.GeneratePermutaionList(LinearCode.N);
            }
            if (mask is null)
            {
                mask = Helper.GenerateMask(LinearCode.N, LinearCode.GaloisField);
            }
            var inverseMask = new List <int>(LinearCode.N);

            for (int i = 0; i < LinearCode.N; i++)
            {
                inverseMask.Add(LinearCode.GaloisField.GetMultiplicativeInverse(mask[i]));
            }
            PrivateKey = new PrivateKey
            {
                GeneratorMatrix        = LinearCode.GeneratorMatrix,
                ScramblerMatrix        = scramblerMatrix,
                InverseScramblerMatrix = MatrixAlgorithms.MatrixInverse(scramblerMatrix, galoisField),
                Permutation            = permutation,
                InversePermutation     = Helper.InversePermutation(permutation),
                Mask        = mask,
                InverseMask = inverseMask
            };

            var encryptionMatrix = MatrixAlgorithms.DotMultiplication(PrivateKey.ScramblerMatrix, generatorMatrix, LinearCode.GaloisField);

            Debug.WriteLine(encryptionMatrix);
            encryptionMatrix = encryptionMatrix.PermuteColumns(PrivateKey.Permutation);
            Debug.WriteLine(encryptionMatrix);
            for (int col = 0; col < encryptionMatrix.ColumnCount; col++)
            {
                for (int row = 0; row < encryptionMatrix.RowCount; row++)
                {
                    encryptionMatrix[row, col] = LinearCode.GaloisField.MultiplyWords(encryptionMatrix[row, col], PrivateKey.Mask[col]);
                }
            }
            Debug.WriteLine(encryptionMatrix);

            PublicKey = new PublicKey
            {
                EncryptionMatrix = encryptionMatrix,
            };
        }
        public void MatrixAlgorithms_Rotate90_Should_Rotate_By_90()
        {
            int[,] matrix = { { 6, 12, 8 }, { 2, 9, 3 }, { 4, 8, 0 } };

            var result = MatrixAlgorithms.Rotate90(matrix);
        }