Пример #1
0
        private void KalmanFilterButton_Click(object sender, RoutedEventArgs e)
        {
            if (CountriesListView.SelectedItem == null)
            {
                return;
            }
            PWTCountry country = (CountriesListView.SelectedItem as CountryVM).CountryObject;
            SortedDictionary <int, double> kalmanDataSet = country.SavingsRateHT;
            int minYear = kalmanDataSet.Keys.Min();
            int maxYear = kalmanDataSet.Keys.Max();

            if (!double.TryParse(TimeStepTerm.Text, out double dt) || dt < 0)
            {
                MessageBox.Show("invalid time step");
                return;
            }
            int numXVals = (int)((maxYear - minYear) / dt) + 1;

            // time steps
            MathMatrix t = Sequences.SteppedSequence(minYear, maxYear, dt);

            // state matrix
            MathMatrix xt = MathMatrix.CreateMatrix(3, numXVals, 0);

            double[] timeArray = t.RowVectorArray(0);
            for (int colidx = 0; colidx < t.ColCount; ++colidx)
            {
                if (Math.Floor(timeArray[colidx]) == Math.Ceiling(timeArray[colidx]) && country.AGrowthRateHT.ContainsKey((int)timeArray[colidx]))
                {
                    int key = (int)timeArray[colidx];
                    xt[0, colidx] = country.AGrowthRateHT[key];
                    xt[1, colidx] = country.SavingsRateHT[key];
                    xt[2, colidx] = country.LGrowthRateHT[key];
                }
                else if (colidx > 0)
                {
                    xt[0, colidx] = xt[0, colidx - 1];
                    xt[1, colidx] = xt[1, colidx - 1];
                    xt[2, colidx] = xt[2, colidx - 1];
                }
            }

            // state matrix
            // x(k) = Fx(k-1) + Gu(k-1) which can be seen below in Kalman filter loop.
            MathMatrix x = MathMatrix.CreateMatrix(3, numXVals, 0);

            // process matrix moves state matrix from state k to k + 1
            MathMatrix F  = MatrixOperations.Identity(3);
            MathMatrix FT = F;

            // control matrix
            MathMatrix u = MathMatrix.CreateMatrix(1, 1, 0);
            MathMatrix G = MathMatrix.CreateMatrix(3, 1, new double[] { 0, 0, 0 });

            // state error covariance matrix
            if (!double.TryParse(CovarianceTerm.Text, out double covterm))
            {
                MessageBox.Show("Covariance term needs to be a double value.");
                return;
            }
            //MathMatrix P = MathMatrix.CreateMatrix(3, 3, new double[] { -0.1, 0.05, -0.1, 0.001, 0.01, -0.005, -0.005, 0.15, -0.05 });
            MathMatrix P = MathMatrix.CreateMatrix(3, 3, new double[] { covterm, 0, 0, 0, covterm, 0, 0, 0, covterm });

            // observation matrix
            MathMatrix H  = MathMatrix.CreateMatrix(1, 3, new double[] { 1, 1, 1 });
            MathMatrix HT = MatrixOperations.Transpose(H);

            // process noise covariance matrix
            MathMatrix Q = MathMatrix.CreateMatrix(3, 3, new double[] { -0.01, 0.05, -0.1, 0.001, -0.01, -0.005, -0.005, 0.15, -0.05 });

            MathMatrix I = MatrixOperations.Identity(3);

            // measurement noise covariance matrix
            MathMatrix R     = MathMatrix.CreateMatrix(1, 1, 3);
            MathMatrix sqrtR = MatrixOperations.Sqrt_Elmtwise(R);

            // measurement noise
            MathMatrix v = sqrtR * Distributions.Normal(numXVals);

            // observation / measurement
            // y(k) = Hxt(k) + v(k);
            MathMatrix y = H * xt + v;

            // Kalman filter
            for (int k = 0; k < numXVals; ++k)
            {
                x.AssignColumn(F * xt.ColumnVector(k) + G * u, k);
                P = F * P * FT + Q;

                // HACK HERE SINCE WE DO NOT YET HAVE MATRIX INVERSION.
                MathMatrix Knumerator   = P * HT;
                MathMatrix Kdenominator = (H * P * HT + R);
                Kdenominator[0, 0] = 1 / Kdenominator[0, 0];
                MathMatrix K = Knumerator * Kdenominator;

                x.AssignColumn(x.ColumnVector(k) + K * (y.ColumnVector(k) - H * x.ColumnVector(k)), k);
                P = (I - K * H) * P;
            }

            ResultsPlot.ClearPlotArea(clearPlotData: true);
            int kalmanrowidx = KalmanFilterPlotType == "n" ? 2 : KalmanFilterPlotType == "s" ? 1 : KalmanFilterPlotType == "g" ? 0 : -1;

            if (kalmanrowidx == -1)
            {
                MessageBox.Show("A filter quantity must be selected.");
                return;
            }

            // GO THROUGH THE ARRAYS AND DROP CORRESPONDING NAN OR INFINITY ENTRIES FROM X AND XT.
            double[] numsOnlyVec = x.RowVectorArray(kalmanrowidx).Where(p => !double.IsNaN(p) && !double.IsInfinity(p)).ToArray();

            double minY = new double[] { numsOnlyVec.Min(), xt.RowVectorArray(kalmanrowidx).Min() }.Min();
            double maxY = new double[] { numsOnlyVec.Max(), xt.RowVectorArray(kalmanrowidx).Max() }.Max();

            ap.YLabel = YAxisLabel.NewAxisLabel(KalmanFilterPlotQtyDict[KalmanFilterPlotType], 0.5, 15, ylp);
            ap.XLabel = XAxisLabel.NewAxisLabel("Year", minY < 0 ? 0.05 : 0.5, 15, minY < 0 ? xlp2 : xlp);
            ResultsPlot.SetAxes(minYear, maxYear, minY, maxY, ap, drawHorAxisAtY0: minY < 0);
            ResultsPlot.SetPlotGridLines(20, 20);

            PointCollection pc  = new PointCollection();
            PointCollection pc2 = new PointCollection();

            for (int idx = 0; idx < numsOnlyVec.Length; ++idx)
            {
                pc.Add(new Point(t[0, idx], numsOnlyVec[idx]));
                pc2.Add(new Point(t[0, idx], xt[kalmanrowidx, idx]));
            }
            ResultsPlot.PlotPoints2D($"KalmanFiltered_{country.CountryCode}_{kalmanrowidx}_Points", pc, dpp);
            ResultsPlot.PlotCurve2D($"KalmanFiltered_{country.CountryCode}_{kalmanrowidx}_Curve", pc2, cp2);
        }
Пример #2
0
        private void EstimatePosition_Click(object sender, RoutedEventArgs e)
        {
            double     dt = 0.1;
            int        N  = 100;
            MathMatrix t  = Sequences.SteppedSequence(0, N * dt, dt);
            MathMatrix F  = MathMatrix.CreateMatrix(2, 2, new double[] { 1, dt, 0, 1 });
            MathMatrix FT = MatrixOperations.Transpose(F);
            MathMatrix G  = MathMatrix.CreateMatrix(2, 1, new double[] { 0.5 * dt * dt, dt });
            MathMatrix H  = MathMatrix.CreateMatrix(1, 2, new double[] { 1, 0 });
            MathMatrix HT = MatrixOperations.Transpose(H);
            MathMatrix Q  = MathMatrix.CreateMatrix(2, 2, new double[] { 0, 0, 0, 0 });
            MathMatrix u  = MathMatrix.CreateMatrix(1, 1, -9.80665);
            MathMatrix I  = MatrixOperations.Identity(2);
            double     y0 = 100;
            double     v0 = 0;
            MathMatrix xt = MathMatrix.CreateMatrix(2, N, 0);

            xt[0, 0] = y0;
            xt[1, 0] = v0;
            MathMatrix x = MathMatrix.CreateMatrix(2, N, 0);

            x[0, 0] = 105;
            if (double.TryParse(Y0.Text, out double qt))
            {
                xt[0, 0] = qt;
                x[0, 0]  = qt;
            }
            qt      = 0;
            x[1, 0] = qt;
            if (double.TryParse(V0.Text, out qt))
            {
                xt[1, 0] = qt;
                x[1, 0]  = qt;
            }

            for (int k = 1; k < N; ++k)
            {
                xt.AssignColumn(F * xt.ColumnVector(k - 1) + G * u, k);
            }

            MathMatrix R     = MathMatrix.CreateMatrix(1, 1, 4);
            MathMatrix sqrtR = MatrixOperations.Sqrt_Elmtwise(R);
            MathMatrix v     = sqrtR * Distributions.Normal(N);
            MathMatrix z     = H * xt + v;

            MathMatrix P = MathMatrix.CreateMatrix(2, 2, new double[] { 10, 0, 0, 0.1 });

            for (int k = 1; k < N; ++k)
            {
                x.AssignColumn(F * x.ColumnVector(k - 1) + G * u, k);
                P = F * P * FT + Q;

                // HACK HERE SINCE WE DO NOT YET HAVE MATRIX INVERSION.
                MathMatrix Knumerator   = P * HT;
                MathMatrix Kdenominator = (H * P * HT + R);
                Kdenominator[0, 0] = 1 / Kdenominator[0, 0];
                MathMatrix K = Knumerator * Kdenominator;

                x.AssignColumn(x.ColumnVector(k) + K * (z.ColumnVector(k) - H * x.ColumnVector(k)), k);
                P = (I - K * H) * P;
            }

            ResultsPlot.ClearPlotArea();
            DataPointPreferences dpp = DataPointPreferences.CreateObject(Colors.Black, 1, 4, 4);
            AxesPreferences2D    ap  = AxesPreferences2D.CreateObject(Colors.Red, Colors.Blue, 1, 1, 40, 1);

            ResultsPlot.SetAxes(0, 10, -400, 110, ap);

            PointCollection pc = new PointCollection();

            for (int idx = 0; idx < x.ColCount; ++idx)
            {
                pc.Add(new Point(t[0, idx], x[0, idx]));
            }

            ResultsPlot.PlotCurve2D("test", pc);
            ResultsPlot.PlotPoints2D("test", pc, dpp);
        }