internal static MarkovDecisionProcess Create()
        {
            // Just a simple MDP with simple nondeterministic choices
            //   ⟳0⟶1⟲
            var mdp = new MarkovDecisionProcess(ModelCapacityByMemorySize.Tiny);

            mdp.StateFormulaLabels         = new string[] { Label1Formula.Label, Label2Formula.Label };
            mdp.StateRewardRetrieverLabels = new string[] { };
            mdp.StartWithInitialDistributions();
            mdp.StartWithNewInitialDistribution();
            mdp.AddTransitionToInitialDistribution(0, 1.0);
            mdp.FinishInitialDistribution();
            mdp.FinishInitialDistributions();
            mdp.SetStateLabeling(1, new StateFormulaSet(new[] { true, false }));
            mdp.StartWithNewDistributions(1);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(1, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();
            mdp.SetStateLabeling(0, new StateFormulaSet(new[] { false, true }));
            mdp.StartWithNewDistributions(0);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(1, 1.0);
            mdp.FinishDistribution();
            mdp.StartWithNewDistribution();
            mdp.AddTransition(0, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();
            return(mdp);
        }
Пример #2
0
        private void AddPaddingStatesInMdp()
        {
            foreach (var paddingState in _paddingStates)
            {
                if (paddingState.Key.IsInitial)
                {
                    MarkovDecisionProcess.StartWithInitialDistributions();
                }
                else
                {
                    MarkovDecisionProcess.StartWithNewDistributions(paddingState.Key.State);
                }
                MarkovDecisionProcess.StartWithNewDistribution();
                MarkovDecisionProcess.AddTransition(paddingState.Value, 1.0);
                MarkovDecisionProcess.FinishDistribution();

                if (paddingState.Key.IsInitial)
                {
                    MarkovDecisionProcess.FinishInitialDistributions();
                }
                else
                {
                    MarkovDecisionProcess.FinishDistributions();
                }
            }
        }
        internal static MarkovDecisionProcess Create()
        {
            // A MDP which was designed to test prob0e
            //   4
            //   ⇅
            //   0⟼1↘
            //    ↘2⟼3⟲
            var mdp = new MarkovDecisionProcess(ModelCapacityByMemorySize.Tiny);

            mdp.StateFormulaLabels         = new string[] { Label1Formula.Label, Label2Formula.Label };
            mdp.StateRewardRetrieverLabels = new string[] { };
            mdp.StartWithInitialDistributions();
            mdp.StartWithNewInitialDistribution();
            mdp.AddTransitionToInitialDistribution(0, 1.0);
            mdp.FinishInitialDistribution();
            mdp.FinishInitialDistributions();

            mdp.SetStateLabeling(0, new StateFormulaSet(new[] { false, false }));
            mdp.StartWithNewDistributions(0);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(1, 1.0);
            mdp.FinishDistribution();
            mdp.StartWithNewDistribution();
            mdp.AddTransition(2, 1.0);
            mdp.FinishDistribution();
            mdp.StartWithNewDistribution();
            mdp.AddTransition(4, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();

            mdp.SetStateLabeling(1, new StateFormulaSet(new[] { false, false }));
            mdp.StartWithNewDistributions(1);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(3, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();

            mdp.SetStateLabeling(2, new StateFormulaSet(new[] { false, false }));
            mdp.StartWithNewDistributions(2);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(3, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();

            mdp.SetStateLabeling(3, new StateFormulaSet(new[] { true, false }));
            mdp.StartWithNewDistributions(3);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(3, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();

            mdp.SetStateLabeling(4, new StateFormulaSet(new[] { false, false }));
            mdp.StartWithNewDistributions(4);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(0, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();
            return(mdp);
        }
Пример #4
0
 private void FinishDistributions(int?stateToStartFrom)
 {
     if (stateToStartFrom.HasValue)
     {
         MarkovDecisionProcess.FinishDistributions();
     }
     else
     {
         MarkovDecisionProcess.FinishInitialDistributions();
     }
 }
        internal static MarkovDecisionProcess Create()
        {
            // MDP of [Parker02, page 36]
            //   0
            //   ⇅
            //   1➞0.6⟼2⟲
            //      0.4⟼3⟲
            var mdp = new MarkovDecisionProcess(ModelCapacityByMemorySize.Tiny);

            mdp.StateFormulaLabels         = new string[] { Label1Formula.Label, Label2Formula.Label };
            mdp.StateRewardRetrieverLabels = new string[] { };
            mdp.StartWithInitialDistributions();
            mdp.StartWithNewInitialDistribution();
            mdp.AddTransitionToInitialDistribution(0, 1.0);
            mdp.FinishInitialDistribution();
            mdp.FinishInitialDistributions();
            mdp.SetStateLabeling(0, new StateFormulaSet(new[] { false, false }));
            mdp.StartWithNewDistributions(0);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(1, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();
            mdp.SetStateLabeling(1, new StateFormulaSet(new[] { false, false }));
            mdp.StartWithNewDistributions(1);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(0, 1.0);
            mdp.FinishDistribution();
            mdp.StartWithNewDistribution();
            mdp.AddTransition(2, 0.6);
            mdp.AddTransition(3, 0.4);
            mdp.FinishDistribution();
            mdp.FinishDistributions();
            mdp.SetStateLabeling(2, new StateFormulaSet(new[] { true, false }));
            mdp.StartWithNewDistributions(2);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(2, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();
            mdp.SetStateLabeling(3, new StateFormulaSet(new[] { false, true }));
            mdp.StartWithNewDistributions(3);
            mdp.StartWithNewDistribution();
            mdp.AddTransition(3, 1.0);
            mdp.FinishDistribution();
            mdp.FinishDistributions();
            return(mdp);
        }
Пример #6
0
        public void ConvertInitialTransitions()
        {
            var cidOfStateRoot = _nmdp.GetRootContinuationGraphLocationOfInitialState();

            Clear(cidOfStateRoot);
            _ltmdpContinuationDistributionMapper.AddInitialDistributionAndContinuation(cidOfStateRoot);

            UpdateContinuationDistributionMapperAndCollectLeafs(cidOfStateRoot);

            MarkovDecisionProcess.StartWithInitialDistributions();

            var numberOfDistributions = _ltmdpContinuationDistributionMapper.GetNumbersOfDistributions();

            for (var distribution = 0; distribution < numberOfDistributions; distribution++)
            {
                AddInitialDistribution(distribution);
            }

            MarkovDecisionProcess.FinishInitialDistributions();
        }