Пример #1
0
        /// <summary>
        /// Encode a MPSCnnKernel into a command Buffer. The operation shall proceed out-of-place.
        /// We calculate the appropriate offset as per how TensorFlow calculates its padding using input image size and stride here.
        /// This [Link](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/nn.py) has an explanation in header comments how tensorFlow pads its convolution input images.
        /// </summary>
        /// <param name="commandBuffer">A valid MTLCommandBuffer to receive the encoded filter</param>
        /// <param name="sourceImage">A valid MPSImage object containing the source image.</param>
        /// <param name="destinationImage">A valid MPSImage to be overwritten by result image. destinationImage may not alias sourceImage</param>
        public override void EncodeToCommandBuffer(IMTLCommandBuffer commandBuffer, MPSImage sourceImage, MPSImage destinationImage)
        {
            // select offset according to padding being used or not
            if (padding)
            {
                var pad_along_height = ((destinationImage.Height - 1) * StrideInPixelsY + KernelHeight - sourceImage.Height);
                var pad_along_width  = ((destinationImage.Width - 1) * StrideInPixelsX + KernelWidth - sourceImage.Width);
                var pad_top          = pad_along_height / 2;
                var pad_left         = pad_along_width / 2;

                Offset = new MPSOffset {
                    X = (nint)(KernelWidth / 2 - pad_left),
                    Y = (nint)(KernelHeight / 2 - pad_top),
                    Z = 0
                };
            }
            else
            {
                Offset = new MPSOffset {
                    X = (nint)(KernelWidth / 2),
                    Y = (nint)(KernelHeight / 2),
                    Z = 0
                };
            }
            base.EncodeToCommandBuffer(commandBuffer, sourceImage, destinationImage);
        }
		/// <summary>
		/// This function encodes all the layers of the network into given commandBuffer, it calls subroutines for each piece of the network
		/// Returns: Guess of the network as to what the digit is as UInt
		/// </summary>
		/// <param name="inputImage">Image coming in on which the network will run</param>
		/// <param name="imageNum">If the test set is being used we will get a value between 0 and 9999 for which of the 10,000 images is being evaluated</param>
		/// <param name="correctLabel">The correct label for the inputImage while testing</param>
		public virtual uint Forward (MPSImage inputImage = null, int imageNum = 9999, int correctLabel = 10)
		{
			uint label = 99;

			// Get command buffer to use in MetalPerformanceShaders.
			using (var commandBuffer = commandQueue.CommandBuffer ()) {
				// output will be stored in this image
				var finalLayer = new MPSImage (commandBuffer.Device, DID);

				// encode layers to metal commandBuffer
				if (inputImage == null)
					layer.EncodeToCommandBuffer (commandBuffer, SrcImage, dstImage);
				else
					layer.EncodeToCommandBuffer (commandBuffer, inputImage, dstImage);

				softmax.EncodeToCommandBuffer (commandBuffer, dstImage, finalLayer);

				// add a completion handler to get the correct label the moment GPU is done and compare it to the correct output or return it
				commandBuffer.AddCompletedHandler (buffer => {
					label = GetLabel (finalLayer);

					if (correctLabel == label)
						Atomics.Increment ();
				});

				// commit commandbuffer to run on GPU and wait for completion
				commandBuffer.Commit ();
				if (imageNum == 9999 || inputImage == null)
					commandBuffer.WaitUntilCompleted ();
			}

			return label;
		}
Пример #3
0
        /// <summary>
        /// This function reads the output probabilities from finalLayer to CPU, sorts them and gets the label with heighest probability
        /// </summary>
        /// <param name="finalLayer">output image of the network this has probabilities of each digit</param>
        /// <returns>Guess of the network as to what the digit is as uint</returns>
        public uint GetLabel(MPSImage finalLayer)
        {
            // even though we have 10 labels outputed the MTLTexture format used is RGBAFloat16 thus 3 slices will have 3*4 = 12 outputs
            var resultHalfArray       = Enumerable.Repeat((ushort)6, 12).ToArray();
            var resultHalfArrayHandle = GCHandle.Alloc(resultHalfArray, GCHandleType.Pinned);
            var resultHalfArrayPtr    = resultHalfArrayHandle.AddrOfPinnedObject();

            var resultFloatArray       = Enumerable.Repeat(0.3f, 10).ToArray();
            var resultFloatArrayHandle = GCHandle.Alloc(resultFloatArray, GCHandleType.Pinned);
            var resultFloatArrayPtr    = resultFloatArrayHandle.AddrOfPinnedObject();

            for (uint i = 0; i <= 2; i++)
            {
                finalLayer.Texture.GetBytes(resultHalfArrayPtr + 4 * (int)i * sizeof(ushort),
                                            sizeof(ushort) * 1 * 4, sizeof(ushort) * 1 * 1 * 4,
                                            new MTLRegion(new MTLOrigin(0, 0, 0), new MTLSize(1, 1, 1)),
                                            0, i);
            }

            // we use vImage to convert our data to float16, Metal GPUs use float16 and swift float is 32-bit
            var fullResultVImagebuf = new vImageBuffer {
                Data        = resultFloatArrayPtr,
                Height      = 1,
                Width       = 10,
                BytesPerRow = 10 * 4
            };

            var halfResultVImagebuf = new vImageBuffer {
                Data        = resultHalfArrayPtr,
                Height      = 1,
                Width       = 10,
                BytesPerRow = 10 * 2
            };

            if (Planar16FtoPlanarF(ref halfResultVImagebuf, ref fullResultVImagebuf, 0) != vImageError.NoError)
            {
                Console.WriteLine("Error in vImage");
            }

            // poll all labels for probability and choose the one with max probability to return
            float max = 0f;
            uint  mostProbableDigit = 10;

            for (uint i = 0; i <= 9; i++)
            {
                if (max < resultFloatArray [i])
                {
                    max = resultFloatArray [i];
                    mostProbableDigit = i;
                }
            }

            resultHalfArrayHandle.Free();
            resultFloatArrayHandle.Free();

            return(mostProbableDigit);
        }
Пример #4
0
        public (NSArray <MPSImage> Inputs, NSArray <MPSState> Losses) GetRandomBatch(IMTLDevice device, int batchSize)
        {
            var trainImageDesc = MPSImageDescriptor.GetImageDescriptor(
                MPSImageFeatureChannelFormat.Unorm8,
                ImageSize, ImageSize, 1,
                1,
                MTLTextureUsage.ShaderWrite | MTLTextureUsage.ShaderRead);

            var trainBatch     = new List <MPSImage> ();
            var lossStateBatch = new List <MPSState> ();

            unsafe
            {
                fixed(byte *imagesPointer = imagesData)
                fixed(byte *labelsPointer = labelsData)
                {
                    for (var i = 0; i < batchSize; i++)
                    {
                        var randomIndex = random.Next(numImages);

                        var trainImage = new MPSImage(device, trainImageDesc)
                        {
                            Label = "TrainImage" + i
                        };
                        trainBatch.Add(trainImage);
                        var trainImagePointer = imagesPointer + ImagesPrefixSize + randomIndex * ImageSize * ImageSize;
                        trainImage.WriteBytes((IntPtr)trainImagePointer, MPSDataLayout.HeightPerWidthPerFeatureChannels, 0);

                        var labelPointer = labelsPointer + LabelsPrefixSize + randomIndex;
                        var labelsValues = new float[12];
                        labelsValues[*labelPointer] = 1;

                        fixed(void *p = labelsValues)
                        {
                            using var data = NSData.FromBytes((IntPtr)p, 12 * sizeof(float));
                            var desc = MPSCnnLossDataDescriptor.Create(
                                data, MPSDataLayout.HeightPerWidthPerFeatureChannels, new MTLSize(1, 1, 12));
                            var lossState = new MPSCnnLossLabels(device, desc);

                            lossStateBatch.Add(lossState);
                        }
                    }
                }
            }

            return(NSArray <MPSImage> .FromNSObjects(trainBatch.ToArray()),
                   NSArray <MPSState> .FromNSObjects(lossStateBatch.ToArray()));
        }
Пример #5
0
        /// <summary>
        /// This function encodes all the layers of the network into given commandBuffer, it calls subroutines for each piece of the network
        /// Returns: Guess of the network as to what the digit is as uint
        /// </summary>
        /// <param name="inputImage">Image coming in on which the network will run</param>
        /// <param name="imageNum">If the test set is being used we will get a value between 0 and 9999 for which of the 10,000 images is being evaluated</param>
        /// <param name="correctLabel">The correct label for the inputImage while testing</param>
        public override uint Forward(MPSImage inputImage = null, int imageNum = 9999, int correctLabel = 10)
        {
            uint label = 99;

            // Get command buffer to use in MetalPerformanceShaders.
            using (var commandBuffer = commandQueue.CommandBuffer()) {
                // output will be stored in this image
                var finalLayer = new MPSImage(commandBuffer.Device, DID);

                // encode layers to metal commandBuffer
                if (inputImage == null)
                {
                    conv1.EncodeToCommandBuffer(commandBuffer, SrcImage, c1Image);
                }
                else
                {
                    conv1.EncodeToCommandBuffer(commandBuffer, inputImage, c1Image);
                }

                pool.EncodeToCommandBuffer(commandBuffer, c1Image, p1Image);
                conv2.EncodeToCommandBuffer(commandBuffer, p1Image, c2Image);
                pool.EncodeToCommandBuffer(commandBuffer, c2Image, p2Image);
                fc1.EncodeToCommandBuffer(commandBuffer, p2Image, fc1Image);
                fc2.EncodeToCommandBuffer(commandBuffer, fc1Image, dstImage);
                softmax.EncodeToCommandBuffer(commandBuffer, dstImage, finalLayer);

                // add a completion handler to get the correct label the moment GPU is done and compare it to the correct output or return it
                commandBuffer.AddCompletedHandler(buffer => {
                    label = GetLabel(finalLayer);

                    if (correctLabel == label)
                    {
                        Atomics.Increment();
                    }
                });

                // commit commandbuffer to run on GPU and wait for completion
                commandBuffer.Commit();
                if (imageNum == 9999 || inputImage == null)
                {
                    commandBuffer.WaitUntilCompleted();
                }
            }

            return(label);
        }
Пример #6
0
        /// <summary>
        /// This function runs the inference network on the test set
        /// </summary>
        /// <param name="imageNum">If the test set is being used we will get a value between 0 and 9999 for which of the 10,000 images is being evaluated</param>
        /// <param name="correctLabel">The correct label for the inputImage while testing</param>
        void Inference(int imageNum, int correctLabel)
        {
            // get the correct image pixels from the test set
            int startIndex = imageNum * mnistInputNumPixels;

            // create a source image for the network to forward
            var inputImage = new MPSImage(device, runningNet.SID);

            // put image in source texture (input layer)
            inputImage.Texture.ReplaceRegion(region: new MTLRegion(new MTLOrigin(0, 0, 0), new MTLSize((nint)mnistInputWidth, mnistInputHeight, 1)),
                                             level: 0,
                                             slice: 0,
                                             pixelBytes: Mnistdata.Images + startIndex,
                                             bytesPerRow: mnistInputWidth,
                                             bytesPerImage: 0);

            // run the network forward pass
            runningNet.Forward(inputImage, imageNum, correctLabel);
        }
Пример #7
0
        public MnistFullLayerNeuralNetwork(IMTLCommandQueue commandQueueIn)
        {
            // CommandQueue to be kept around
            commandQueue = commandQueueIn;
            device       = commandQueueIn.Device;

            // Initialize MPSImage from descriptors
            SrcImage = new MPSImage(device, SID);
            dstImage = new MPSImage(device, DID);

            // setup convolution layer (which is a fully-connected layer)
            // cliprect, offset is automatically set
            layer = SlimMPSCnnFullyConnected.Create(kernelWidth: 28, kernelHeight: 28,
                                                    inputFeatureChannels: 1, outputFeatureChannels: 10,
                                                    neuronFilter: null, device: device,
                                                    kernelParamsBinaryName: "NN");

            // prepare softmax layer to be applied at the end to get a clear label
            softmax = new MPSCnnSoftMax(device);
        }
		public MnistFullLayerNeuralNetwork (IMTLCommandQueue commandQueueIn)
		{
			// CommandQueue to be kept around
			commandQueue = commandQueueIn;
			device = commandQueueIn.Device;

			// Initialize MPSImage from descriptors
			SrcImage = new MPSImage (device, SID);
			dstImage = new MPSImage (device, DID);

			// setup convolution layer (which is a fully-connected layer)
			// cliprect, offset is automatically set
			layer = SlimMPSCnnFullyConnected.Create (kernelWidth: 28, kernelHeight: 28,
													 inputFeatureChannels: 1, outputFeatureChannels: 10,
													 neuronFilter: null, device: device,
													 kernelParamsBinaryName: "NN");

			// prepare softmax layer to be applied at the end to get a clear label
			softmax = new MPSCnnSoftMax (device);
		}
Пример #9
0
        public MnistDeepConvNeuralNetwork(IMTLCommandQueue commandQueueIn)
            : base(commandQueueIn)
        {
            // use device for a little while to initialize
            var device = commandQueueIn.Device;

            pool = new MPSCnnPoolingMax(device, 2, 2, 2, 2)
            {
                Offset = new MPSOffset {
                    X = 1, Y = 1, Z = 0
                },
                EdgeMode = MPSImageEdgeMode.Clamp
            };
            relu = new MPSCnnNeuronReLU(device, 0);

            // Initialize MPSImage from descriptors
            c1Image  = new MPSImage(device, c1id);
            p1Image  = new MPSImage(device, p1id);
            c2Image  = new MPSImage(device, c2id);
            p2Image  = new MPSImage(device, p2id);
            fc1Image = new MPSImage(device, fc1id);

            // setup convolution layers
            conv1 = SlimMPSCnnConvolution.Create(kernelWidth: 5,
                                                 kernelHeight: 5,
                                                 inputFeatureChannels: 1,
                                                 outputFeatureChannels: 32,
                                                 neuronFilter: relu,
                                                 device: device,
                                                 kernelParamsBinaryName: "conv1",
                                                 padding: true,
                                                 strideX: 1,
                                                 strideY: 1,
                                                 destinationFeatureChannelOffset: 0,
                                                 groupNum: 1);

            conv2 = SlimMPSCnnConvolution.Create(kernelWidth: 5,
                                                 kernelHeight: 5,
                                                 inputFeatureChannels: 32,
                                                 outputFeatureChannels: 64,
                                                 neuronFilter: relu,
                                                 device: device,
                                                 kernelParamsBinaryName: "conv2",
                                                 padding: true,
                                                 strideX: 1,
                                                 strideY: 1,
                                                 destinationFeatureChannelOffset: 0,
                                                 groupNum: 1);

            // same as a 1x1 convolution filter to produce 1x1x10 from 1x1x1024
            fc1 = SlimMPSCnnFullyConnected.Create(kernelWidth: 7,
                                                  kernelHeight: 7,
                                                  inputFeatureChannels: 64,
                                                  outputFeatureChannels: 1024,
                                                  neuronFilter: null,
                                                  device: device,
                                                  kernelParamsBinaryName: "fc1",
                                                  destinationFeatureChannelOffset: 0);

            fc2 = SlimMPSCnnFullyConnected.Create(kernelWidth: 1,
                                                  kernelHeight: 1,
                                                  inputFeatureChannels: 1024,
                                                  outputFeatureChannels: 10,
                                                  neuronFilter: null,
                                                  device: device,
                                                  kernelParamsBinaryName: "fc2");
        }
Пример #10
0
        public static unsafe UIKit.UIImage GetUIImage(MPSImage mpsImage)
        {
            var width        = (int)mpsImage.Width;
            var height       = (int)mpsImage.Height;
            var nfc          = (int)mpsImage.FeatureChannels;
            var obytesPerRow = 4 * width;
            var cellSize     = 44;

            using var cs = CoreGraphics.CGColorSpace.CreateDeviceRGB();

            //Console.WriteLine ((width, height, mpsImage.Precision, mpsImage.PixelSize, mpsImage.FeatureChannels, mpsImage.PixelFormat, mpsImage.FeatureChannelFormat));
            if (mpsImage.FeatureChannelFormat == MPSImageFeatureChannelFormat.Float32 && nfc == 3)
            {
                var data = new float[width * height * nfc];
                fixed(float *dataPointer = data)
                {
                    mpsImage.ReadBytes((IntPtr)dataPointer, MPSDataLayout.HeightPerWidthPerFeatureChannels, 0);
                }

                using var bc = new CoreGraphics.CGBitmapContext(null, width, height, 8, obytesPerRow, cs, CoreGraphics.CGImageAlphaInfo.NoneSkipFirst);
                var pixels = (byte *)bc.Data;
                var p      = pixels;
                for (var y = 0; y < height; y++)
                {
                    for (var x = 0; x < width; x++)
                    {
                        *p++ = 255;
                        *p++ = ClampRGBA32Float(data[y * (width * 3) + x * 3 + 2]);
                        *p++ = ClampRGBA32Float(data[y * (width * 3) + x * 3 + 1]);
                        *p++ = ClampRGBA32Float(data[y * (width * 3) + x * 3 + 0]);
                    }
                }
                var cgimage = bc.ToImage();
                //Console.WriteLine ($"pixels f32 = " + string.Join (", ", data.Skip (data.Length / 2).Take (12)));
                return(UIImage.FromImage(cgimage));
            }
            else if (mpsImage.FeatureChannelFormat == MPSImageFeatureChannelFormat.Float32 && nfc == 1)
            {
                var data = new float[width * height * nfc];
                fixed(float *dataPointer = data)
                {
                    mpsImage.ReadBytes((IntPtr)dataPointer, MPSDataLayout.HeightPerWidthPerFeatureChannels, 0);
                }

                using var bc = new CoreGraphics.CGBitmapContext(null, width, height, 8, obytesPerRow, cs, CoreGraphics.CGImageAlphaInfo.NoneSkipFirst);
                var pixels = (byte *)bc.Data;
                var p      = pixels;
                for (var y = 0; y < height; y++)
                {
                    for (var x = 0; x < width; x++)
                    {
                        var g   = ClampRGBA32Float(data[y * width + x]);
                        *   p++ = 255;
                        *   p++ = g;
                        *   p++ = g;
                        *   p++ = g;
                    }
                }
                var cgimage = bc.ToImage();
                //Console.WriteLine ($"pixels f32 = " + string.Join (", ", data.Skip (data.Length / 2).Take (12)));
                return(UIImage.FromImage(cgimage));
            }
            else if (mpsImage.FeatureChannelFormat == MPSImageFeatureChannelFormat.Unorm8 && nfc == 3)
            {
                var data = new byte[width * height * (int)mpsImage.FeatureChannels];
                fixed(byte *dataPointer = data)
                {
                    mpsImage.ReadBytes((IntPtr)dataPointer, MPSDataLayout.HeightPerWidthPerFeatureChannels, 0);
                    //mpsImage.Texture.GetBytes ((IntPtr)dataPointer, (nuint)(4 * width), MTLRegion.Create3D (0, 0, 0, width, height, 1), 0);
                }

                using var bc = new CoreGraphics.CGBitmapContext(null, width, height, 8, obytesPerRow, cs, CoreGraphics.CGImageAlphaInfo.NoneSkipFirst);
                var pixels = (byte *)bc.Data;
                var p      = pixels;
                for (var y = 0; y < height; y++)
                {
                    for (var x = 0; x < width; x++)
                    {
                        *p++ = 255;
                        *p++ = data[y * (width * 3) + x * 3 + 2]; // Red
                        *p++ = data[y * (width * 3) + x * 3 + 1]; // Green
                        *p++ = data[y * (width * 3) + x * 3 + 0]; // Blue
                    }
                }
                var cgimage = bc.ToImage();
                //Console.WriteLine ($"pixels 3 unorm8 = " + string.Join (", ", data.Skip (data.Length / 2).Take (12)));
                return(UIImage.FromImage(cgimage));
            }
            else if (mpsImage.FeatureChannelFormat == MPSImageFeatureChannelFormat.Unorm8 && nfc == 1)
            {
                var data = new byte[width * height * (int)mpsImage.FeatureChannels];
                fixed(byte *dataPointer = data)
                {
                    mpsImage.ReadBytes((IntPtr)dataPointer, MPSDataLayout.HeightPerWidthPerFeatureChannels, 0);
                    //mpsImage.Texture.GetBytes ((IntPtr)dataPointer, (nuint)(4 * width), MTLRegion.Create3D (0, 0, 0, width, height, 1), 0);
                }

                using var bc = new CoreGraphics.CGBitmapContext(null, width, height, 8, obytesPerRow, cs, CoreGraphics.CGImageAlphaInfo.NoneSkipFirst);
                var pixels = (byte *)bc.Data;
                var p      = pixels;
                for (var y = 0; y < height; y++)
                {
                    for (var x = 0; x < width; x++)
                    {
                        var g   = data[y * width + x]; // Red
                        *   p++ = 255;
                        *   p++ = g;
                        *   p++ = g;
                        *   p++ = g;
                    }
                }
                var cgimage = bc.ToImage();
                //Console.WriteLine ($"pixels 1 unorm8 = " + string.Join (", ", data.Skip (data.Length / 2).Take (12)));
                return(UIImage.FromImage(cgimage));
            }
            else if (mpsImage.FeatureChannelFormat == MPSImageFeatureChannelFormat.Float32 && width == 1 && height == 1)
            {
                var data = new float[width * height * nfc];
                fixed(void *dataPointer = data)
                {
                    mpsImage.ReadBytes((IntPtr)dataPointer, MPSDataLayout.HeightPerWidthPerFeatureChannels, 0);
                }

                return(DrawCells(nfc, cellSize, data));
            }
            else if (mpsImage.FeatureChannelFormat == MPSImageFeatureChannelFormat.Unorm8 && width == 1 && height == 1)
            {
                var data = new byte[width * height * nfc];
                fixed(void *dataPointer = data)
                {
                    mpsImage.ReadBytes((IntPtr)dataPointer, MPSDataLayout.HeightPerWidthPerFeatureChannels, 0);
                }

                return(DrawCells(nfc, cellSize, data.Select(x => x / 255.0f).ToArray()));
            }
            else
            {
                if (width == 1 && height == 1)
                {
                    width  = cellSize;
                    height = cellSize;
                }
                UIGraphics.BeginImageContext(new CoreGraphics.CGSize(width, height));
                UIColor.Red.SetColor();
                var m = $"{mpsImage.FeatureChannels}{mpsImage.FeatureChannelFormat}?";
                m.DrawString(new CoreGraphics.CGPoint(0, 0), UIFont.SystemFontOfSize(8));
                var image = UIGraphics.GetImageFromCurrentImageContext();
                UIGraphics.EndImageContext();
                return(image);
            }
        }
Пример #11
0
		/// <summary>
		/// This function runs the inference network on the test set
		/// </summary>
		/// <param name="imageNum">If the test set is being used we will get a value between 0 and 9999 for which of the 10,000 images is being evaluated</param>
		/// <param name="correctLabel">The correct label for the inputImage while testing</param>
		void Inference (int imageNum, int correctLabel)
		{
			// get the correct image pixels from the test set
			int startIndex = imageNum * mnistInputNumPixels;

			// create a source image for the network to forward
			var inputImage = new MPSImage (device, runningNet.SID);

			// put image in source texture (input layer)
			inputImage.Texture.ReplaceRegion (region: new MTLRegion (new MTLOrigin (0, 0, 0), new MTLSize ((nint)mnistInputWidth, mnistInputHeight, 1)),
											  level: 0,
											  slice: 0,
											  pixelBytes: Mnistdata.Images + startIndex,
											  bytesPerRow: mnistInputWidth,
											  bytesPerImage: 0);

			// run the network forward pass
			runningNet.Forward (inputImage, imageNum, correctLabel);
		}
		/// <summary>
		/// Encode a MPSCnnKernel into a command Buffer. The operation shall proceed out-of-place.
		/// We calculate the appropriate offset as per how TensorFlow calculates its padding using input image size and stride here.
		/// This [Link](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/nn.py) has an explanation in header comments how tensorFlow pads its convolution input images.
		/// </summary>
		/// <param name="commandBuffer">A valid MTLCommandBuffer to receive the encoded filter</param>
		/// <param name="sourceImage">A valid MPSImage object containing the source image.</param>
		/// <param name="destinationImage">A valid MPSImage to be overwritten by result image. destinationImage may not alias sourceImage</param>
		public override void EncodeToCommandBuffer (IMTLCommandBuffer commandBuffer, MPSImage sourceImage, MPSImage destinationImage)
		{
			// select offset according to padding being used or not
			if (padding) {
				var pad_along_height = ((destinationImage.Height - 1) * StrideInPixelsY + KernelHeight - sourceImage.Height);
				var pad_along_width = ((destinationImage.Width - 1) * StrideInPixelsX + KernelWidth - sourceImage.Width);
				var pad_top = pad_along_height / 2;
				var pad_left = pad_along_width / 2;

				Offset = new MPSOffset {
					X = (nint)(KernelWidth / 2 - pad_left),
					Y = (nint)(KernelHeight / 2 - pad_top),
					Z = 0
				};
			} else {
				Offset = new MPSOffset {
					X = (nint)(KernelWidth / 2),
					Y = (nint)(KernelHeight / 2),
					Z = 0
				};
			}
			base.EncodeToCommandBuffer (commandBuffer, sourceImage, destinationImage);
		}
		/// <summary>
		/// This function reads the output probabilities from finalLayer to CPU, sorts them and gets the label with heighest probability
		/// </summary>
		/// <param name="finalLayer">output image of the network this has probabilities of each digit</param>
		/// <returns>Guess of the network as to what the digit is as uint</returns>
		public uint GetLabel (MPSImage finalLayer)
		{
			// even though we have 10 labels outputed the MTLTexture format used is RGBAFloat16 thus 3 slices will have 3*4 = 12 outputs
			var resultHalfArray = Enumerable.Repeat ((ushort)6, 12).ToArray ();
			var resultHalfArrayHandle = GCHandle.Alloc (resultHalfArray, GCHandleType.Pinned);
			var resultHalfArrayPtr = resultHalfArrayHandle.AddrOfPinnedObject ();

			var resultFloatArray = Enumerable.Repeat (0.3f, 10).ToArray ();
			var resultFloatArrayHandle = GCHandle.Alloc (resultFloatArray, GCHandleType.Pinned);
			var resultFloatArrayPtr = resultFloatArrayHandle.AddrOfPinnedObject ();

			for (uint i = 0; i <= 2; i++) {
				finalLayer.Texture.GetBytes (resultHalfArrayPtr + 4 * (int)i * sizeof (ushort),
											sizeof (ushort) * 1 * 4, sizeof (ushort) * 1 * 1 * 4,
											new MTLRegion (new MTLOrigin (0, 0, 0), new MTLSize (1, 1, 1)),
											0, i);
			}

			// we use vImage to convert our data to float16, Metal GPUs use float16 and swift float is 32-bit
			var fullResultVImagebuf = new vImageBuffer {
				Data = resultFloatArrayPtr,
				Height = 1,
				Width = 10,
				BytesPerRow = 10 * 4
			};

			var halfResultVImagebuf = new vImageBuffer {
				Data = resultHalfArrayPtr,
				Height = 1,
				Width = 10,
				BytesPerRow = 10 * 2
			};

			if (Planar16FtoPlanarF (ref halfResultVImagebuf, ref fullResultVImagebuf, 0) != vImageError.NoError)
				Console.WriteLine ("Error in vImage");

			// poll all labels for probability and choose the one with max probability to return
			float max = 0f;
			uint mostProbableDigit = 10;

			for (uint i = 0; i <= 9; i++) {
				if (max < resultFloatArray [i]) {
					max = resultFloatArray [i];
					mostProbableDigit = i;
				}
			}

			resultHalfArrayHandle.Free ();
			resultFloatArrayHandle.Free ();

			return mostProbableDigit;
		}