Пример #1
0
        public Inceptionv3()
        {
            var     url = NSBundle.MainBundle.GetUrlForResource("Inceptionv3", "mlmodelc");
            NSError err;

            Model = MLModel.Create(url, out err);
        }
        public async Task UpdateAvailableModels()
        {
            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Working, "Working | get available models...");
            try
            {
                Log.Information("Get available ml models from registry.");
                _avalableModels.Clear();
                foreach (var repository in _newConfig.Repositories)
                {
                    try
                    {
                        var models = await MLModel.GetAvailableModelsFromRegistry(repository);

                        foreach (var model in models)
                        {
                            _avalableModels.Add(new MlModelData(model.Image.Name,
                                                                model.Type,
                                                                model.ModelVersion,
                                                                model.ApiVersion));
                        }
                    }
                    catch (Exception e)
                    {
                        Log.Warning(e, $"Unable to parse models from {repository}. Skipped.");
                    }
                }
                Log.Information("Successfully get available ml models.");
            }
            catch (Exception e)
            {
                Log.Error(e, "Unable get available models.");
            }
            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Ready, "");
        }
Пример #3
0
        public ObjectDetector()
        {
            var     url = NSBundle.MainBundle.GetUrlForResource("ObjectDetector", "mlmodelc");
            NSError err;

            model = MLModel.Create(url, out err);
        }
Пример #4
0
        public MarsHabitatPricer()
        {
            var     url = NSBundle.MainBundle.GetUrlForResource("MarsHabitatPricer", "mlmodelc");
            NSError err;

            model = MLModel.Create(url, out err);
        }
Пример #5
0
        public TheseAreBirds()
        {
            var     url = NSBundle.MainBundle.GetUrlForResource("TheseAreBirds", "mlmodelc");
            NSError err;

            model = MLModel.Create(url, out err);
        }
Пример #6
0
        public MobCatOrNot()
        {
            var     url = NSBundle.MainBundle.GetUrlForResource("MobCatOrNot", "mlmodelc");
            NSError err;

            model = MLModel.Create(url, out err);
        }
        public async Task UpdateModelStatus()
        {
            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Working, "Working | loading model...");
            //get the last version of ml model with specific config
            try
            {
                Log.Information("Loading ml model.");
                Status = "Loading ml model...";
                var config = _newConfig.MlModelConfig;
                // get local versions
                var localVersions = await MLModel.GetInstalledVersions(config);

                if (!localVersions.Contains(config.ModelVersion))
                {
                    throw new Exception($"There are no ml local model to init: {config.Image.Name}:{config.Image.Tag}");
                }
                if (config.ApiVersion != API_VERSION)
                {
                    throw new Exception($"Unsupported api {config.ApiVersion}. Only api v {API_VERSION} is supported.");
                }

                Repository = config.Image.Name;
                Version    = $"{config.ModelVersion}";
                Type       = $"{config.Type}";
                Status     = $"Ready";
                Log.Information("Successfully init ml model.");
            }
            catch (Exception e)
            {
                Status = $"Not ready.";
                Log.Error(e, "Unable to init model.");
            }
            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Ready, "");
        }
Пример #8
0
        private async void predict_predict_Click(object sender, RoutedEventArgs e)
        {
            List <float> predictions = new List <float>();

            int deviceId = int.Parse(train_device.Text);

            string s = $"Count: {predictData.Count()}\n";

            var task = Task.Run(() =>
            {
                MLModel model = new MLModel($"{deviceId}.mlm");

                for (int i = 0; i < predictData.Count; i++)
                {
                    var prediction = model.Predict(predictData[i]);
                    predictions.Add(prediction);
                    s += $"{predictData[i].Timestamp.ToString("HH")}: {predictData[i].Volume:f1} -> {prediction:f1}" +
                         $" ({((predictData[i].Volume != 0) ? 100 - predictData[i].Volume / prediction * 100:0):f2}%)\n";
                }
            });

            await Process(task);

            DrawChild(predictions, "Prediction");
            Log(s);
        }
Пример #9
0
    // Start is called before the first frame update

    void Start()
    {
        try
        {
            BoardShim.enable_dev_board_logger();

            BrainFlowInputParams input_params = new BrainFlowInputParams();
            int board_id = (int)BoardIds.MINDROVE_BLUETOOTH_BOARD;//= parse_args(args, input_params);

            board_shim = new BoardShim(board_id, input_params);
            board_shim.prepare_session();

            board_shim.start_stream(); // use this for default options
                                       //board_shim.start_stream(450000, "file://file_stream.csv:w");

            BrainFlowModelParams concentration_params = new BrainFlowModelParams((int)BrainFlowMetrics.CONCENTRATION, (int)BrainFlowClassifiers.REGRESSION);
            concentration = new MLModel(concentration_params);
            concentration.prepare();
            sampling_rate = 250;//BoardShim.get_sampling_rate(board_id);
            eeg_channels  = BoardShim.get_eeg_channels(board_id);
        }
        catch (BrainFlowException ex)
        {
            Debug.Log(ex);
        }
    }
Пример #10
0
        public mymodel()
        {
            var     url = NSBundle.MainBundle.GetUrlForResource("mymodel", "mlmodelc");
            NSError err;

            model = MLModel.Create(url, out err);
        }
        public ImageClassifier()
        {
            var     url = NSBundle.MainBundle.GetUrlForResource("ImageClassifier", "mlmodelc");
            NSError err;

            model = MLModel.Create(url, out err);
        }
        private VNCoreMLModel LoadModel(string modelName)
        {
            var modelPath = NSBundle.MainBundle.GetUrlForResource(modelName, "mlmodelc") ?? CompileModel(modelName);

            if (modelPath == null)
            {
                throw new ImageClassifierException($"Model {modelName} does not exist");
            }

            var mlModel = MLModel.Create(modelPath, out NSError err);

            if (err != null)
            {
                throw new NSErrorException(err);
            }

            var model = VNCoreMLModel.FromMLModel(mlModel, out err);

            if (err != null)
            {
                throw new NSErrorException(err);
            }

            return(model);
        }
Пример #13
0
        static void Main(string[] args)
        {
            // use synthetic board for demo
            BoardShim.enable_dev_board_logger();
            BrainFlowInputParams input_params = new BrainFlowInputParams();
            int       board_id      = parse_args(args, input_params);
            BoardShim board_shim    = new BoardShim(board_id, input_params);
            int       sampling_rate = BoardShim.get_sampling_rate(board_shim.get_board_id());
            int       nfft          = DataFilter.get_nearest_power_of_two(sampling_rate);

            int[] eeg_channels = BoardShim.get_eeg_channels(board_shim.get_board_id());

            board_shim.prepare_session();
            board_shim.start_stream(3600);
            System.Threading.Thread.Sleep(10000);
            board_shim.stop_stream();
            double[,] data = board_shim.get_board_data();
            board_shim.release_session();

            Tuple <double[], double[]> bands = DataFilter.get_avg_band_powers(data, eeg_channels, sampling_rate, true);

            double[]             feature_vector = bands.Item1.Concatenate(bands.Item2);
            BrainFlowModelParams model_params   = new BrainFlowModelParams((int)BrainFlowMetrics.CONCENTRATION, (int)BrainFlowClassifiers.REGRESSION);
            MLModel concentration = new MLModel(model_params);

            concentration.prepare();
            Console.WriteLine("Concentration: " + concentration.predict(feature_vector));
            concentration.release();
        }
Пример #14
0
        private static VNCoreMLModel LoadModel(string modelName)
        {
            var modelPath = CompileModel(modelName);

            if (modelPath == null)
            {
                throw new ImageClassifierException($"Model {modelName} does not exist");
            }

            var mlModel = MLModel.Create(modelPath, out NSError err);

            if (err != null)
            {
                throw new NSErrorException(err);
            }

            var model = VNCoreMLModel.FromMLModel(mlModel, out err);

            if (err != null)
            {
                throw new NSErrorException(err);
            }

            return(model);
        }
Пример #15
0
        public customvision()
        {
            var     url = NSBundle.MainBundle.GetUrlForResource("customvision", "mlmodelc");
            NSError err;

            model = MLModel.Create(url, out err);
        }
Пример #16
0
        public SqueezeNet()
        {
            var     url = NSBundle.MainBundle.GetUrlForResource("SqueezeNet", "mlmodelc");
            NSError err;

            model = MLModel.Create(url, out err);
        }
Пример #17
0
        public PhotoDetector()
        {
            var assetPath = NSBundle.MainBundle.GetUrlForResource("FriesOrNotFries", "mlmodelc");

            _mlModel = MLModel.Create(assetPath, out var _);
            _model   = VNCoreMLModel.FromMLModel(_mlModel, out var __);
        }
        /// <summary>
        /// Initializes a new instance of the <see cref="CoreMLImageModel"/> class and loads the CoreML model.
        /// </summary>
        public CoreMLImageModel(string modelName, string inputFeatureName, string outputFeatureName)
        {
            NSUrl assetPath = NSBundle.MainBundle.GetUrlForResource(modelName, "mlmodelc");

            this.mlModel           = MLModel.Create(assetPath, out NSError mlError);
            this.inputFeatureName  = inputFeatureName;
            this.outputFeatureName = outputFeatureName;
        }
Пример #19
0
        static JankenJudgeService()
        {
            // Load the ML model
            var assetPath            = NSBundle.MainBundle.GetUrlForResource("jankenmodel", "mlmodelc");
            var friedOrNotFriedModel = MLModel.Create(assetPath, out _);

            _vnmodel = VNCoreMLModel.FromMLModel(friedOrNotFriedModel, out _);
        }
Пример #20
0
        static FriesOrNotFriesService()
        {
            // Load the ML model
            var assetPath            = NSBundle.MainBundle.GetUrlForResource("e3e4e645c0944c6ca84f9a000e501b22", "mlmodelc");
            var friedOrNotFriedModel = MLModel.Create(assetPath, out _);

            VModel = VNCoreMLModel.FromMLModel(friedOrNotFriedModel, out _);
        }
Пример #21
0
        static DetectService()
        {
            // Load the ML model
            var assetPath = NSBundle.MainBundle
                            .GetUrlForResource(name: "detectBalls", fileExtension: "mlmodelc");
            var detectModel = MLModel.Create(url: assetPath, error: out _);

            VModel = VNCoreMLModel.FromMLModel(model: detectModel, error: out _);
        }
Пример #22
0
        private async void Stop()
        {
            var config = await MLModelConfigExtension.Load(_mlConfigPath);

            using (var model = new MLModel(config))
            {
                await model.Stop();
            }
        }
Пример #23
0
        public async Task PredictAll()
        {
            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Working, "");
            try
            {
                Status = "starting ml model...";
                //load config
                var confDir    = Path.Join(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData), "lacmus");
                var configPath = Path.Join(confDir, "appConfig.json");
                _appConfig = await AppConfig.Create(configPath);

                var config = _appConfig.MlModelConfig;
                using (var model = new MLModel(config))
                {
                    await model.Init();

                    var count       = 0;
                    var objectCount = 0;
                    Status = "processing...";
                    foreach (var photoViewModel in _photos.Items)
                    {
                        try
                        {
                            photoViewModel.Annotation.Objects = await model.Predict(photoViewModel);

                            photoViewModel.BoundBoxes = photoViewModel.GetBoundingBoxes();
                            if (photoViewModel.BoundBoxes.Any())
                            {
                                photoViewModel.Photo.Attribute = Attribute.WithObject;
                                photoViewModel.IsHasObject     = true;
                            }
                            objectCount += photoViewModel.BoundBoxes.Count();
                            count++;
                            PredictProgress     = (double)count / _photos.Items.Count() * 100;
                            PredictTextProgress = $"{Convert.ToInt32(PredictProgress)} %";
                            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Working, $"Working | {(int)((double) count / _photos.Items.Count() * 100)} %, [{count} of {_photos.Items.Count()}]");
                            Console.WriteLine($"\tProgress: {(double) count / _photos.Items.Count() * 100} %");
                        }
                        catch (Exception e)
                        {
                            Log.Error(e, $"Unable to process file {photoViewModel.Path}. Slipped.");
                        }
                    }
                    Status = "stopping ml model...";
                    await model.Stop();

                    PredictTextProgress = $"predict {_photos.Count} photos.";
                    Log.Information($"Successfully predict {_photos.Count} photos. Find {objectCount} objects.");
                }
            }
            catch (Exception e)
            {
                Status = "error.";
                Log.Error(e, "Unable to get prediction.");
            }
            _applicationStatusManager.ChangeCurrentAppStatus(Enums.Status.Ready, "");
        }
Пример #24
0
        void LoadMLModel()
        {
            // Load the ML model
            var assetPath = NSBundle.MainBundle.GetUrlForResource("44105f291f4648b2b0ad7d42d639cb20", "mlmodelc");
            var mlModel   = MLModel.Create(assetPath, out NSError mlErr);
            var vModel    = VNCoreMLModel.FromMLModel(mlModel, out NSError vnErr);

            ClassificationRequest = new VNCoreMLRequest(vModel, HandleClassification);
        }
Пример #25
0
        public iOSMNSSD()
        {
            var assetPath = NSBundle.MainBundle.GetUrlForResource("ssd_mobilenet_feature_extractor", "mlmodelc");
            var mlModel   = MLModel.Create(assetPath, out NSError mlError);

            if (mlError == null)
            {
                _VNMLModel = VNCoreMLModel.FromMLModel(mlModel, out mlError);
            }
        }
        public IActionResult Predict(HeartData input)
        {
            var model = new MLModel();

            model.Build();
            var result = model.Consume(input);

            ViewBag.HeartPrediction = result;
            return(View());
        }
Пример #27
0
        protected void Application_Start()
        {
            AreaRegistration.RegisterAllAreas();
            GlobalConfiguration.Configure(WebApiConfig.Register);
            FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
            RouteConfig.RegisterRoutes(RouteTable.Routes);
            BundleConfig.RegisterBundles(BundleTable.Bundles);

            MLModel.GetInstance(); // Start the Machine Learning Algorithm
        }
Пример #28
0
        private void PrepareCoreMLModel()
        {
            var xModelPath = NSBundle.MainBundle.GetUrlForResource("xModel", "mlmodelc");
            var yModelPath = NSBundle.MainBundle.GetUrlForResource("yModel", "mlmodelc");

            xModel = MLModel.Create(xModelPath, out NSError xModelErrors);
            System.Console.WriteLine(xModel);

            yModel = MLModel.Create(yModelPath, out NSError yModelErrors);
            System.Console.WriteLine(yModel);
        }
        VNRequest GetClassificationRequest(string resourceName)
        {
            resourceName = resourceName.Replace(".mlmodel", "").Replace(".mlmodelc", "");
            var     modelPath = NSBundle.MainBundle.GetUrlForResource(resourceName, ".mlmodelc");
            NSError createErr, mlErr;
            var     mlModel               = MLModel.Create(modelPath, out createErr);
            var     model                 = VNCoreMLModel.FromMLModel(mlModel, out mlErr);
            var     classificationRequest = new VNCoreMLRequest(model, HandleClassifications);

            return(classificationRequest);
        }
Пример #30
0
        /// <summary>
        /// A default constructor with default constructor value.
        /// </summary>
        public CoreMLModel()
        {
            var assetPath = NSBundle.MainBundle.GetUrlForResource(ModelName, ModelResourceExt);

            if (assetPath == null)
            {
                throw new FileNotFoundException();
            }
            _mlModel          = MLModel.Create(assetPath, out _);
            _inputFeatureName = Constants.DefaultInputFeatureName;
        }