/// <summary> /// Export result for specific dataset based on trained model in the mlconfig file /// </summary> /// <param name="mlConfigPath"></param> /// <param name="resultPath"></param> public static void ExportResult(string mlConfigPath, string resultPath, DataSetType dsType) { var device = DeviceDescriptor.UseDefaultDevice(); var task = MLExport.ExportToCSV(mlConfigPath, device, resultPath, dsType); task.Wait(); }
/// <summary> /// Prints the performance analysis on the console /// </summary> /// <param name="mlConfigPath"></param> public static void PrintPerformance(string mlConfigPath) { try { //print evaluation result on console var performanceData = MLExport.PrintPerformance(mlConfigPath, DataSetType.Validation, DeviceDescriptor.UseDefaultDevice()); performanceData.Wait(); foreach (var s in performanceData.Result) { Console.WriteLine(s); } } catch (Exception) { throw; } }
internal async Task <bool> ExportToCSV(string filepath) { try { if (string.IsNullOrEmpty(TrainingParameters.LastBestModel)) { MessageBox.Show("No trained model exist. The model result cannot be exported."); return(false); } //Load ML configuration file var mlConfigPath = Project.GetMLConfigPath(Settings, Name); await MLExport.ExportToCSV(mlConfigPath, MLFactory.GetDevice(ProcessDevice.Default), filepath); return(true); } catch (Exception) { throw; } }
static void Main(string[] args) { string root = "C:\\sc\\github\\anndotnet\\src\\tool\\"; //transformDailyLevelVeanaLake(); //return; //regression var mlConfigFile1 = $"{root}anndotnet.wnd\\Resources\\Concrete\\ConcreteSlumpProject\\FFNModel.mlconfig"; //binary classification var mlConfigFile2 = $"{root}anndotnet.wnd\\Resources\\Titanic\\TitanicProject\\DNNModel.mlconfig"; //Multi-class classification //Famous multi class classification datset: https://archive.ics.uci.edu/ml/datasets/iris var mlConfigFile3 = "./model_mlconfigs/iris.mlconfig"; //run example var token2 = new CancellationToken(); //train mlconfig var result = MachineLearning.Train(mlConfigFile3, trainingProgress, token2, null); //once the mode is trained you can write performance analysis of the model MachineLearning.PrintPerformance(mlConfigFile1); //evaluate model and export the result of testing MLExport.ExportToCSV(mlConfigFile2, DeviceDescriptor.UseDefaultDevice(), "./model_mlconfigs/iris_result.csv").Wait(); //******run all configurations in the solution****** //string strLocation1 = "C:\\sc\\github\\anndotnet\\src\\tool\\"; //for (int i = 0; i < 10; i++) // runAllml_configurations(strLocation1); //*****end of program***** Console.WriteLine("Press any key to continue!"); Console.ReadKey(); }