static void Main() { ML.Init(); Application.EnableVisualStyles(); Application.SetCompatibleTextRenderingDefault(false); Application.Run(new Main()); }
public void TestDetectMovingDown() { Assert.IsFalse(ML.DetectMovingDown(null)); var notD1 = new int[32] { -1, -1, -3, -15, -1, 1, 0, -1, -1, 1, -10, -18, 0, 0, 1, 0, 0, -1, -7, 0, 7, 0, 1, 1, 0, -1, 0, -1, 0, 0, 1, 0 }; var notD2 = new int[32] { 0, 1, 1, 2, 0, -1, 0, 0, 0, 1, 18, 23, -2, -1, -1, -1, 0, 1, 7, -12, -10, -1, 0, 0, 0, -1, 1, 0, -1, -1, -1, 1 }; var notD3 = new int[32] { 0, 0, 0, 1, 12, 24, 2, 1, 1, 0, 0, 3, -20, 29, 4, 1, 0, 0, -3, 3, -10, 9, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0 }; Assert.IsFalse(ML.DetectMovingDown(notD1)); Assert.IsFalse(ML.DetectMovingDown(notD2)); Assert.IsFalse(ML.DetectMovingDown(notD3)); var movD1 = new int[32] { 0, -1, -2, -9, 0, -1, 0, -1, -1, -2, -12, -22, 0, 0, 0, 0, 0, 0, -6, 3, 5, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0 }; var movD2 = new int[32] { 0, 0, 0, 1, -12, 24, 2, 1, 1, 0, 0, 3, -20, 29, 4, 1, 0, 0, -3, 3, 10, 9, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0 }; var movD3 = new int[32] { 0, 1, 1, 2, 0, -1, 0, 0, 0, 1, 18, 23, -2, -1, -1, -1, 0, 1, 7, -12, -10, -1, -2, 0, 0, -1, 1, 0, -1, -1, 20, 1 }; Assert.IsTrue(ML.DetectMovingDown(movD1)); Assert.IsTrue(ML.DetectMovingDown(movD2)); Assert.IsTrue(ML.DetectMovingDown(movD3)); }
public void MatrixFactorization_Estimator() { string labelColumnName = "Label"; string matrixColumnIndexColumnName = "Col"; string matrixRowIndexColumnName = "Row"; // This data contains three columns, Label, Col, and Row where Col and Row will be treated as the expected input names // of the trained matrix factorization model. var data = new TextLoader(Env, GetLoaderArgs(labelColumnName, matrixColumnIndexColumnName, matrixRowIndexColumnName)) .Read(new MultiFileSource(GetDataPath(TestDatasets.trivialMatrixFactorization.trainFilename))); // "invalidData" is not compatible to "data" because it contains columns Label, ColRenamed, and RowRenamed (no column is Col or Row). var invalidData = new TextLoader(Env, GetLoaderArgs(labelColumnName, matrixColumnIndexColumnName + "Renamed", matrixRowIndexColumnName + "Renamed")) .Read(new MultiFileSource(GetDataPath(TestDatasets.trivialMatrixFactorization.testFilename))); var options = new MatrixFactorizationTrainer.Options { MatrixColumnIndexColumnName = matrixColumnIndexColumnName, MatrixRowIndexColumnName = matrixRowIndexColumnName, LabelColumnName = labelColumnName, NumIterations = 3, NumThreads = 1, ApproximationRank = 4, }; var est = ML.Recommendation().Trainers.MatrixFactorization(options); TestEstimatorCore(est, data, invalidInput: invalidData); Done(); }
public void UgroupTest() { var data = new List <UngroupExample> { new UngroupExample { Age = 18, UserName = new[] { "Amy", "Willy" }, Gender = new[] { "Girl", "Boy" } }, new UngroupExample { Age = 20, UserName = new[] { "Dori", "Ariel" }, Gender = new[] { "Fish", "Mermaid" } } }; var dataView = ComponentCreation.CreateDataView(Env, data); var ungroupTransform = new UngroupTransform(Env, dataView, UngroupTransform.UngroupMode.Inner, "UserName", "Gender"); var ungrouped = ML.CreateEnumerable <GroupExample>(ungroupTransform, false).ToList(); Assert.Equal(4, ungrouped.Count); Assert.Equal(18, ungrouped[0].Age); Assert.Equal("Amy", ungrouped[0].UserName); Assert.Equal("Girl", ungrouped[0].Gender); Assert.Equal(18, ungrouped[1].Age); Assert.Equal("Willy", ungrouped[1].UserName); Assert.Equal("Boy", ungrouped[1].Gender); Assert.Equal(20, ungrouped[2].Age); Assert.Equal("Dori", ungrouped[2].UserName); Assert.Equal("Fish", ungrouped[2].Gender); Assert.Equal(20, ungrouped[3].Age); Assert.Equal("Ariel", ungrouped[3].UserName); Assert.Equal("Mermaid", ungrouped[3].Gender); }
// POST: api/Prediction public string Post([FromBody] byte[] data) { if (data == null) { return(null); } using var stream = new MemoryStream(data); var image = Image.FromStream(stream); if (image == null) { return(null); } //ml processing image.Save("path"); var model = ML.model("path"); model.run(); return(JsonConvert.SerializeObject(data)); }
public ActionResult DeleteConfirmed(int id) { ML mL = db.MLs.Find(id); db.MLs.Remove(mL); db.SaveChanges(); return(RedirectToAction("Index")); }
public Main() { InitializeComponent(); mainThreadId = System.Threading.Thread.CurrentThread.ManagedThreadId; AllowDrop = true; ML.Logger += Log; ML.Init(); }
protected override Parser.Result Evaluate(string data, ref int from) { var list = Utils.GetFunctionArgs(data, ref from, ParaCnt); uint.TryParse(list[0], out uint arg1); ML.ER_SetErr((ei)arg1); Interpreter.Instance.AppendOutput("Error_Set(" + arg1.ToString() + ")"); return(new Parser.Result()); }
protected override Parser.Result Evaluate(string data, ref int from) { var list = Utils.GetFunctionArgs(data, ref from, ParaCnt); uint.TryParse(list[0], out uint arg1); bool bRet = ML.MT_GetHomeDone((mi)arg1); Interpreter.Instance.AppendOutput("Motor_CheckHome(" + arg1.ToString() + ") = " + bRet.ToString()); return(new Parser.Result(bRet == true ? 1 : 0, null, null)); }
public ActionResult Edit([Bind(Include = "UserID,DogID,Age,Gender,FirstName,Breed")] ML mL) { if (ModelState.IsValid) { db.Entry(mL).State = EntityState.Modified; db.SaveChanges(); return(RedirectToAction("Index")); } return(View(mL)); }
protected override Parser.Result Evaluate(string data, ref int from) { var list = Utils.GetFunctionArgs(data, ref from, ParaCnt); uint.TryParse(list[0], out uint arg1); uint.TryParse(list[1], out uint arg2); bool bRet = ML.CL_Complete((ci)arg1, (fb)arg2); Interpreter.Instance.AppendOutput("Cylinder_CheckStop(" + arg1.ToString() + "," + arg2.ToString() + ") = " + bRet.ToString()); return(new Parser.Result(bRet == true ? 1 : 0, null, null)); }
public void ViewDetails() { //Populate the Excel Sheet GlobalDefinitions.ExcelLib.PopulateInCollection(Base.ExcelPath, "ManageListings"); Thread.Sleep(2000); //page Refresh Global.GlobalDefinitions.driver.Navigate().Refresh(); ML.Click(); Thread.Sleep(4000); while (true) { var j = 1; while (j <= 10) { // identify 2nd row of table. Then extact the text and assign to a variable var Category1 = Global.GlobalDefinitions.driver.FindElement(By.XPath("//*[@id='listing-management-section']/div[2]/div[1]/table/tbody/tr[" + j + "]/td[2]")).Text; var ViewBtn = Global.GlobalDefinitions.driver.FindElement(By.XPath("//*[@id='listing-management-section']/div[2]/div[1]/table/tbody/tr[" + j + "]/td[8]/i[1]")); //compare the text with the expected text. "Graphics & Design" if (Category1 == (Global.GlobalDefinitions.ExcelLib.ReadData(2, "Category1"))) { //Clickin on View Button ViewBtn.Click(); break; } j++; } var btnNext = Global.GlobalDefinitions.driver.FindElement(By.XPath("//*[@id='listing-management-section']/div[2]/div[1]/div/button[4]")); btnNext.Click(); } //Validation for View Button var Text = (Global.GlobalDefinitions.driver.FindElement(By.XPath("//*[@id='service-detail-section']/div[3]/div/div[1]/div/div/div/a[1]")).Text); Assert.AreEqual("Graphics & Design ", Text); Console.WriteLine(" user can see the details"); Global.Base.test.Log(RelevantCodes.ExtentReports.LogStatus.Info, " can view the details"); //string text = Global.GlobalDefinitions.driver.FindElement(By.XPath("//*[@id='service-detail-section']/div[2]/div/div[2]/div[1]/div[1]/div[2]/h1/span")).Text; // if (text == "QA") // { // Global.Base.test.Log(RelevantCodes.ExtentReports.LogStatus.Pass, " can view the details"); // } // else // Global.Base.test.Log(RelevantCodes.ExtentReports.LogStatus.Fail, " can't see the details"); }
protected override Parser.Result Evaluate(string data, ref int from) { var list = Utils.GetFunctionArgs(data, ref from, ParaCnt); uint.TryParse(list[0], out uint arg1); if (!Constants.CHECK) { ML.MT_GoHome((mi)arg1); } Interpreter.Instance.AppendOutput("Motor_Home(" + arg1.ToString() + ")"); return(new Parser.Result()); }
protected override Parser.Result Evaluate(string data, ref int from) { var list = Utils.GetFunctionArgs(data, ref from, ParaCnt); uint.TryParse(list[0], out uint arg1); uint.TryParse(list[1], out uint arg2); if (!Constants.CHECK) { ML.CL_Move((ci)arg1, (fb)arg2); } Interpreter.Instance.AppendOutput("Cylinder_Move(" + arg1.ToString() + "," + arg2.ToString() + ")"); return(new Parser.Result()); }
protected override Parser.Result Evaluate(string data, ref int from) { var list = Utils.GetFunctionArgs(data, ref from, ParaCnt); uint.TryParse(list[0], out uint arg1); double.TryParse(list[1], out double arg2); if (!Constants.CHECK) { ML.MT_GoAbsRun(arg1, arg2); } Interpreter.Instance.AppendOutput("MoveMotr(" + arg1.ToString() + ", " + arg2.ToString() + ")"); return(new Parser.Result()); }
public void WordTokenizeWorkout() { var data = new[] { new TestClass() { A = "This is a good sentence.", B = new string[2] { "Much words", "Wow So Cool" } } }; var dataView = ML.Data.ReadFromEnumerable(data); var invalidData = new[] { new TestWrong() { A = 1, B = new float[2] { 2, 3 } } }; var invalidDataView = ML.Data.ReadFromEnumerable(invalidData); var pipe = new WordTokenizingEstimator(Env, new[] { new WordTokenizingEstimator.ColumnInfo("TokenizeA", "A"), new WordTokenizingEstimator.ColumnInfo("TokenizeB", "B"), }); TestEstimatorCore(pipe, dataView, invalidInput: invalidDataView); // Reuse the pipe trained on dataView in TestEstimatorCore to make prediction. var result = pipe.Fit(dataView).Transform(dataView); // Extract the transformed result of the first row (the only row we have because data contains only one TestClass) as a native class. var nativeResult = ML.CreateEnumerable <NativeResult>(result, false).First(); // Check the tokenization of A. Expected result is { "This", "is", "a", "good", "sentence." }. var tokenizeA = new[] { "This", "is", "a", "good", "sentence." }; Assert.True(tokenizeA.Length == nativeResult.TokenizeA.Length); for (int i = 0; i < tokenizeA.Length; ++i) { Assert.Equal(tokenizeA[i], nativeResult.TokenizeA[i]); } // Check the tokenization of B. Expected result is { "Much", "words", "Wow", "So", "Cool" }. One may think that the expected output // should be a 2-D array { { "Much", "words"}, { "Wow", "So", "Cool" } }, but please note that ML.NET may flatten all outputs if // they are high-dimension tensors. var tokenizeB = new[] { "Much", "words", "Wow", "So", "Cool" }; Assert.True(tokenizeB.Length == nativeResult.TokenizeB.Length); for (int i = 0; i < tokenizeB.Length; ++i) { Assert.Equal(tokenizeB[i], nativeResult.TokenizeB[i]); } Done(); }
// GET: MLs/Edit/5 public ActionResult Edit(int?id) { if (id == null) { return(RedirectToAction("MyAccount", "Users")); } ML mL = db.MLs.Find(id); if (mL == null) { return(HttpNotFound()); } return(View(mL)); }
void DoCopyTree(ref TPredicateItemBig ABig, ref TDynamicArray AStack) { int m_who; TAlternativeParserItemList ML; TAlternativeParserItemBase mBase; TAlternativeParserItemTFS mTFS; TAlternativeParserItemBig mBig; TPredicateItemTFE mTFE; TAlternativeParserItemBig mRfc = ABig.Rfc; ML = mRfc.MainList; for (int i = 0; i <= ML.Count - 1; i++) { mBase = ML.GetItems(i); m_who = mBase.Who(); if (m_who == 0) { mTFS = (TAlternativeParserItemTFS)(mBase); TPredicateItemTFS iTfs = new TPredicateItemTFS(); iTfs.Assign(mTFS); ABig.AddItem(iTfs); for (int j = 0; j <= iTfs.TFECount - 1; j++) { mTFE = iTfs.GetTFEItems(j); if (mTFE.RfcTFE.Big != null) { TPredicateItemBig iBig = NewBig(mTFE.RfcTFE.Big); mTFE.Big = iBig; AStack.InsertToFirst(iBig); } } } if (m_who == 1) { mBig = (TAlternativeParserItemBig)(mBase); TPredicateItemBig iBig = NewBig(mBig); ABig.AddItem(iBig); AStack.InsertToFirst(iBig); } } for (int i = 0; i <= mRfc.CountBig - 1; i++) { mBig = mRfc.GetItemsBig(i); TPredicateItemBig iBig = NewBig(mBig); ABig.AddItem(iBig); AStack.InsertToFirst(iBig); } }
public void TestTextPredictAndSet() { var intention = new ML <MyTextRow, bool>(); IEnumerable <MyTextRow> data = GetTextData(); var msg = "Parking is terrible"; var result = intention.Using(MLType.TextFeaturizingEstimator) .LearnFrom(data) .PredictAndSet(new MyTextRow { Text = msg }); Assert.IsTrue(result.Label); }
public ActionResult Create(int UserID, int DogID, Double Age, DogGender?Gender, string FirstName, String Breed) { ML mL = new ML(); mL.UserID = UserID; mL.DogID = DogID; mL.Age = Age; mL.Gender = Gender; mL.FirstName = FirstName; mL.Breed = Breed; db.MLs.Add(mL); db.SaveChanges(); return(RedirectToAction("Index")); }
public void TestLinearPredictWithOutput() { var intention = new ML <MyLinearRow, float>(); IEnumerable <MyLinearRow> data = GetFloatData(); var result = intention.Using(MLType.LightGbm) .WhereScoreIs("Score") .LearnFrom(data) .PredictWithOutput(new MyLinearRow { Val1 = 1, Val2 = 0, Val3 = 0 }); Assert.IsTrue(result.Score > 0.75); }
private void RestoreSavedNote() { IEnumerable <NoteNode> noteslist = ML.RetrieveNotes(null); if (noteslist.Count() > 0) { foreach (var note in noteslist) { note.IsSaved = true; TrVwNotesList.Nodes.Add(note); } TrVwNotesList.SelectedNode = TrVwNotesList.Nodes?[0]; TxtTitle.Text = (TrVwNotesList.SelectedNode as NoteNode)?.Title; RTxtDesc.Text = (TrVwNotesList.SelectedNode as NoteNode)?.Desc; } }
public void CacheTest() { var src = Enumerable.Range(0, 100).Select(c => new MyData()).ToArray(); var data = ML.CreateDataView(src); data.GetColumn <float[]>(ML, "Features").ToArray(); data.GetColumn <float[]>(ML, "Features").ToArray(); Assert.True(src.All(x => x.AccessCount == 2)); src = Enumerable.Range(0, 100).Select(c => new MyData()).ToArray(); data = ML.CreateDataView(src); data = ML.Data.Cache(data); data.GetColumn <float[]>(ML, "Features").ToArray(); data.GetColumn <float[]>(ML, "Features").ToArray(); Assert.True(src.All(x => x.AccessCount == 1)); }
public void Reset() { code[0] = dout.Addres; if (code[1] == 0x10) { for (int a = 8; a < code.Length; a += 2) { code[a] = 0; } } else { code[5] = 0; } ML.Interrupt(code); }
public void GroupTest() { var data = new List <GroupExample> { new GroupExample { Age = 18, UserName = "******", Gender = "Girl" }, new GroupExample { Age = 18, UserName = "******", Gender = "Boy" }, new GroupExample { Age = 20, UserName = "******", Gender = "Fish" }, new GroupExample { Age = 20, UserName = "******", Gender = "Mermaid" } }; var dataView = ComponentCreation.CreateDataView(Env, data); var groupTransform = new GroupTransform(Env, dataView, "Age", "UserName", "Gender"); var grouped = ML.CreateEnumerable <UngroupExample>(groupTransform, false).ToList(); // Expected content of grouped should contains two rows. // Age, UserName, Gender // 18, {"Amy", "Willy"}, {"Girl", "Boy"} // 20, {"Dori", "Ariel"}, {"Fish", "Mermaid"} // Note that "Age, UserName, Gender" is not a row; it just shows column names per row below it. Assert.Equal(2, grouped.Count); // grouped[0] is the first output row --- 18, {"Amy", "Willy"}, {"Girl", "Boy"} Assert.Equal(18, grouped[0].Age); Assert.Equal(2, grouped[0].UserName.Length); Assert.Equal("Amy", grouped[0].UserName[0]); Assert.Equal("Willy", grouped[0].UserName[1]); Assert.Equal(2, grouped[0].Gender.Length); Assert.Equal("Girl", grouped[0].Gender[0]); Assert.Equal("Boy", grouped[0].Gender[1]); // grouped[1] is the second output row --- 20, {"Dori", "Ariel"}, {"Fish", "Mermaid"} Assert.Equal(20, grouped[1].Age); Assert.Equal(2, grouped[1].Gender.Length); Assert.Equal("Dori", grouped[1].UserName[0]); Assert.Equal("Ariel", grouped[1].UserName[1]); Assert.Equal(2, grouped[1].Gender.Length); Assert.Equal("Fish", grouped[1].Gender[0]); Assert.Equal("Mermaid", grouped[1].Gender[1]); }
private void StartCamera() { ML.OnFrameResult += result => { if (Disposing || !Visible) { return; } Invoke(new MethodInvoker(delegate { CurrentParrot = result.ParrotCount; CurrentRabbit = result.RabbitCount; CurrentSergeant = result.SergeantCount; })); }; ML.StartFile(imageBoxFrameGrabber1, imageBoxFrameGrabber2, file); }
public void Run() { lock (Lab3.locker) { Matrix MF = new Matrix(N); Matrix MG = new Matrix(N); Matrix MH = new Matrix(N); Matrix ML; MF.MatrixFillsOne(1); MG.MatrixFillsOne(1); MH.MatrixFillsOne(1); Console.WriteLine("F2 started."); ML = MF.sum(MG.multiply(MH)); Console.WriteLine("ML = \n" + ML.toString()); Console.WriteLine("Function 2 end."); } }
private void CtrlDHandler() { NoteNode note = TrVwNotesList.SelectedNode as NoteNode; if (note?.IsSaved ?? false) { if (ML.DeleteNoteNode(note)) { TxtTitle.Text = RTxtDesc.Text = string.Empty; note.IsSaved = false; TrVwNotesList.Nodes.Remove(note); } else { MessageBox.Show("failed deletion"); } } }
void NextGenome() { Random.InitState((int)69); GameObject[] carts = GameObject.FindGameObjectsWithTag("Cart"); foreach (GameObject cart in carts) { Destroy(cart); } bool new_gene = false; Debug.Log("Next Genome!"); genome++; if (genome == MAX_GENOMES) { new_gene = true; generation++; genome = 0; } GameObject[] tunnels = GameObject.FindGameObjectsWithTag("Tunnel"); foreach (GameObject tunnel in tunnels) { Spawner spawner = tunnel.GetComponentInChildren <Spawner>(); if (spawner != null) { spawner.NewRound(); } } GameObject[] intersections = GameObject.FindGameObjectsWithTag("Intersection"); foreach (GameObject intersection in intersections) { ML ml = intersection.GetComponent <ML> (); if (ml != null) { ml.cost = 0; if (new_gene == true) { ml.NewGeneration(); } } } new_gene = false; }
private void CtrlEHandler() { NoteNode note = TrVwNotesList.SelectedNode as NoteNode; if (note?.IsSaved ?? false) { if (ML.DeleteNoteNode(note)) { TxtTitle.Enabled = RTxtDesc.Enabled = true; note.IsSaved = false; note.ForeColor = Color.Yellow; note.BackColor = Color.Red; } else { MessageBox.Show("failed deletion"); } } }
//------------------------------------------------------------------------ // currection method //------------------------------------------------------------------------ public ML.LineSegment3 CorrectionLineSegment(MonoDrop srcDrop , ML.LineSegment3 lineSeg3) { if (null == srcDrop) return lineSeg3; //Correction value //PairInt parameter is array index(0 start , 1 is not ). //Index2 startPos = PairInt.Start_C5_R0; Vector3 putPos_left_up = m_boardInfo.GetPositionAt_ViewLeftUp () + Single.UIRoot.transform.position; Vector3 putPos_right_up = m_boardInfo.GetPositionAt_ViewRightUp () + Single.UIRoot.transform.position; Vector3 putPos_left_bottom = m_boardInfo.GetPositionAt_ViewLeftBottom () + Single.UIRoot.transform.position; Vector3 putPos_right_bottom = m_boardInfo.GetPositionAt_ViewRightBottom () + Single.UIRoot.transform.position; //Vector3 putPos_left_up = GetPositionOfPutDrop (new PairInt (0, 0)); //Vector3 putPos_right_up = GetPositionOfPutDrop (new PairInt (0, (int)ConstBoard.Max_Row-1)); //Vector3 putPos_left_bottom = GetPositionOfPutDrop (new PairInt ((int)ConstBoard.Max_Column-1, 0)); //Vector3 putPos_right_bottom = GetPositionOfPutDrop (new PairInt ((int)ConstBoard.Max_Column-1, (int)ConstBoard.Max_Row-1)); #if UNITY_EDITOR //------------------------------------------------------------------------- //20140906 chamto test //------------------------------------------------------------------------- Single.MonoDebug.cube_LeftUp.transform.position = putPos_left_up; Single.MonoDebug.cube_RightUp.transform.position = putPos_right_up; Single.MonoDebug.cube_LeftBottom.transform.position = putPos_left_bottom; Single.MonoDebug.cube_RightBottom.transform.position = putPos_right_bottom; //------------------------------------------------------------------------- #endif Bounds bob = m_boardInfo.GetBoundaryOfView (Single.UIRoot.transform.position); ML.LineSegment3 result = new ML.LineSegment3(); result.origin = srcDrop.gotoWorldPosition; result.last = lineSeg3.last; //CDefine.DebugLog ("Bounds " + bob + bob.min + bob.max); if (lineSeg3.last.y >= bob.max.y) { //------------- correction up ------------- //CDefine.DebugLog("----correction up"); result.last_y = putPos_left_up.y; if(lineSeg3.last.x <= bob.min.x) { //correction left-up result.last = putPos_left_up; //CDefine.DebugLog("----correction left up" + putPos_left_up); } if(lineSeg3.last.x >= bob.max.x) { //correction right-up result.last = putPos_right_up; //CDefine.DebugLog("----correction right up"); } }else if (lineSeg3.last.y <= bob.min.y) { ////------------- correction bottom ------------- //CDefine.DebugLog("----correction bottom"); result.last_y = putPos_left_bottom.y; if(lineSeg3.last.x <= bob.min.x) { //correction left-bottom result.last = putPos_left_bottom; //CDefine.DebugLog("----correction left bottom"+putPos_left_bottom); } if(lineSeg3.last.x >= bob.max.x) { //correction right-bottom result.last = putPos_right_bottom; //CDefine.DebugLog("----correction right bottom"); } }else if(lineSeg3.last.x <= bob.min.x) { ////------------- correction left ------------- result.last_x = putPos_left_up.x; //CDefine.DebugLog("----correction left"); }else if(lineSeg3.last.x >= bob.max.x) { ////------------- correction right ------------- result.last_x = putPos_right_up.x; //CDefine.DebugLog("----correction right"); }else { ////------------- correction is not required //CDefine.DebugLog("----correction is not required"); return lineSeg3; } //CDefine.DebugLog ("Correction LineSegement : " + result); return result; }
public override void Compute(ML.Data.IMLData input, double[] output) { if(input is ML.Data.Basic.BasicMLData) Compute(((ML.Data.Basic.BasicMLData)input).Data, output); else { // TODO: make this more efficient var tmp = new double[input.Count]; input.CopyTo(tmp, 0, input.Count); Compute(tmp, output); } }