public void TestSimpleExperiment() { var dataPath = GetDataPath("adult.tiny.with-schema.txt"); using (var env = new TlcEnvironment()) { var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath); var importOutput = experiment.Add(importInput); var normalizeInput = new ML.Transforms.MinMaxNormalizer { Data = importOutput.Data }; normalizeInput.AddColumn("NumericFeatures"); var normalizeOutput = experiment.Add(normalizeInput); experiment.Compile(); experiment.SetInput(importInput.InputFile, new SimpleFileHandle(env, dataPath, false, false)); experiment.Run(); var data = experiment.GetOutput(normalizeOutput.OutputData); var schema = data.Schema; Assert.Equal(5, schema.ColumnCount); var expected = new[] { "Label", "Workclass", "Categories", "NumericFeatures", "NumericFeatures" }; for (int i = 0; i < schema.ColumnCount; i++) { Assert.Equal(expected[i], schema.GetColumnName(i)); } } }
public void TestTensorFlowEntryPoint() { var dataPath = GetDataPath("Train-Tiny-28x28.txt"); using (var env = new TlcEnvironment(42)) { var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath); importInput.Arguments.Column = new TextLoaderColumn[] { new TextLoaderColumn { Name = "Label", Source = new[] { new TextLoaderRange(0) } }, new TextLoaderColumn { Name = "Placeholder", Source = new[] { new TextLoaderRange(1, 784) } } }; var importOutput = experiment.Add(importInput); var tfTransformInput = new ML.Transforms.TensorFlowScorer { Data = importOutput.Data, InputColumns = new[] { "Placeholder" }, OutputColumn = "Softmax", ModelFile = "mnist_model/frozen_saved_model.pb" }; var tfTransformOutput = experiment.Add(tfTransformInput); experiment.Compile(); experiment.SetInput(importInput.InputFile, new SimpleFileHandle(env, dataPath, false, false)); experiment.Run(); var data = experiment.GetOutput(tfTransformOutput.OutputData); var schema = data.Schema; Assert.Equal(3, schema.ColumnCount); Assert.Equal("Softmax", schema.GetColumnName(2)); Assert.Equal(10, schema.GetColumnType(2).VectorSize); } }
public void TestOvaMacroWithUncalibratedLearner() { var dataPath = GetDataPath(@"iris.txt"); using (var env = new TlcEnvironment(42)) { // Specify subgraph for OVA var subGraph = env.CreateExperiment(); var learnerInput = new Trainers.AveragedPerceptronBinaryClassifier { Shuffle = false }; var learnerOutput = subGraph.Add(learnerInput); // Create pipeline with OVA and multiclass scoring. var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath); importInput.Arguments.Column = new TextLoaderColumn[] { new TextLoaderColumn { Name = "Label", Source = new[] { new TextLoaderRange(0) } }, new TextLoaderColumn { Name = "Features", Source = new[] { new TextLoaderRange(1, 4) } } }; var importOutput = experiment.Add(importInput); var oneVersusAll = new Models.OneVersusAll { TrainingData = importOutput.Data, Nodes = subGraph, UseProbabilities = true, }; var ovaOutput = experiment.Add(oneVersusAll); var scoreInput = new ML.Transforms.DatasetScorer { Data = importOutput.Data, PredictorModel = ovaOutput.PredictorModel }; var scoreOutput = experiment.Add(scoreInput); var evalInput = new ML.Models.ClassificationEvaluator { Data = scoreOutput.ScoredData }; var evalOutput = experiment.Add(evalInput); experiment.Compile(); experiment.SetInput(importInput.InputFile, new SimpleFileHandle(env, dataPath, false, false)); experiment.Run(); var data = experiment.GetOutput(evalOutput.OverallMetrics); var schema = data.Schema; var b = schema.TryGetColumnIndex(MultiClassClassifierEvaluator.AccuracyMacro, out int accCol); Assert.True(b); using (var cursor = data.GetRowCursor(col => col == accCol)) { var getter = cursor.GetGetter <double>(accCol); b = cursor.MoveNext(); Assert.True(b); double acc = 0; getter(ref acc); Assert.Equal(0.71, acc, 2); b = cursor.MoveNext(); Assert.False(b); } } }
public void TestCrossValidationMacroWithNonDefaultNames() { string dataPath = GetDataPath(@"adult.tiny.with-schema.txt"); using (var env = new TlcEnvironment(42)) { var subGraph = env.CreateExperiment(); var textToKey = new ML.Transforms.TextToKeyConverter(); textToKey.Column = new[] { new ML.Transforms.TermTransformColumn() { Name = "Label1", Source = "Label" } }; var textToKeyOutput = subGraph.Add(textToKey); var hash = new ML.Transforms.HashConverter(); hash.Column = new[] { new ML.Transforms.HashJoinTransformColumn() { Name = "GroupId1", Source = "Workclass" } }; hash.Data = textToKeyOutput.OutputData; var hashOutput = subGraph.Add(hash); var learnerInput = new Trainers.FastTreeRanker { TrainingData = hashOutput.OutputData, NumThreads = 1, LabelColumn = "Label1", GroupIdColumn = "GroupId1" }; var learnerOutput = subGraph.Add(learnerInput); var modelCombine = new ML.Transforms.ManyHeterogeneousModelCombiner { TransformModels = new ArrayVar <ITransformModel>(textToKeyOutput.Model, hashOutput.Model), PredictorModel = learnerOutput.PredictorModel }; var modelCombineOutput = subGraph.Add(modelCombine); var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath); importInput.Arguments.HasHeader = true; importInput.Arguments.Column = new TextLoaderColumn[] { new TextLoaderColumn { Name = "Label", Source = new[] { new TextLoaderRange(0) } }, new TextLoaderColumn { Name = "Workclass", Source = new[] { new TextLoaderRange(1) }, Type = ML.Data.DataKind.Text }, new TextLoaderColumn { Name = "Features", Source = new[] { new TextLoaderRange(9, 14) } } }; var importOutput = experiment.Add(importInput); var crossValidate = new Models.CrossValidator { Data = importOutput.Data, Nodes = subGraph, TransformModel = null, LabelColumn = "Label1", GroupColumn = "GroupId1", Kind = Models.MacroUtilsTrainerKinds.SignatureRankerTrainer }; crossValidate.Inputs.Data = textToKey.Data; crossValidate.Outputs.PredictorModel = modelCombineOutput.PredictorModel; var crossValidateOutput = experiment.Add(crossValidate); experiment.Compile(); experiment.SetInput(importInput.InputFile, new SimpleFileHandle(env, dataPath, false, false)); experiment.Run(); var data = experiment.GetOutput(crossValidateOutput.OverallMetrics); var schema = data.Schema; var b = schema.TryGetColumnIndex("NDCG", out int metricCol); Assert.True(b); b = schema.TryGetColumnIndex("Fold Index", out int foldCol); Assert.True(b); using (var cursor = data.GetRowCursor(col => col == metricCol || col == foldCol)) { var getter = cursor.GetGetter <VBuffer <double> >(metricCol); var foldGetter = cursor.GetGetter <DvText>(foldCol); DvText fold = default; // Get the verage. b = cursor.MoveNext(); Assert.True(b); var avg = default(VBuffer <double>); getter(ref avg); foldGetter(ref fold); Assert.True(fold.EqualsStr("Average")); // Get the standard deviation. b = cursor.MoveNext(); Assert.True(b); var stdev = default(VBuffer <double>); getter(ref stdev); foldGetter(ref fold); Assert.True(fold.EqualsStr("Standard Deviation")); Assert.Equal(5.247, stdev.Values[0], 3); Assert.Equal(4.703, stdev.Values[1], 3); Assert.Equal(3.844, stdev.Values[2], 3); var sumBldr = new BufferBuilder <double>(R8Adder.Instance); sumBldr.Reset(avg.Length, true); var val = default(VBuffer <double>); for (int f = 0; f < 2; f++) { b = cursor.MoveNext(); Assert.True(b); getter(ref val); foldGetter(ref fold); sumBldr.AddFeatures(0, ref val); Assert.True(fold.EqualsStr("Fold " + f)); } var sum = default(VBuffer <double>); sumBldr.GetResult(ref sum); for (int i = 0; i < avg.Length; i++) { Assert.Equal(avg.Values[i], sum.Values[i] / 2); } b = cursor.MoveNext(); Assert.False(b); } } }
public void TestCrossValidationMacroWithStratification() { var dataPath = GetDataPath(@"breast-cancer.txt"); using (var env = new TlcEnvironment(42)) { var subGraph = env.CreateExperiment(); var nop = new ML.Transforms.NoOperation(); var nopOutput = subGraph.Add(nop); var learnerInput = new ML.Trainers.StochasticDualCoordinateAscentBinaryClassifier { TrainingData = nopOutput.OutputData, NumThreads = 1 }; var learnerOutput = subGraph.Add(learnerInput); var modelCombine = new ML.Transforms.ManyHeterogeneousModelCombiner { TransformModels = new ArrayVar <ITransformModel>(nopOutput.Model), PredictorModel = learnerOutput.PredictorModel }; var modelCombineOutput = subGraph.Add(modelCombine); var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath); importInput.Arguments.Column = new ML.Data.TextLoaderColumn[] { new ML.Data.TextLoaderColumn { Name = "Label", Source = new[] { new ML.Data.TextLoaderRange(0) } }, new ML.Data.TextLoaderColumn { Name = "Strat", Source = new[] { new ML.Data.TextLoaderRange(1) } }, new ML.Data.TextLoaderColumn { Name = "Features", Source = new[] { new ML.Data.TextLoaderRange(2, 9) } } }; var importOutput = experiment.Add(importInput); var crossValidate = new ML.Models.CrossValidator { Data = importOutput.Data, Nodes = subGraph, TransformModel = null, StratificationColumn = "Strat" }; crossValidate.Inputs.Data = nop.Data; crossValidate.Outputs.PredictorModel = modelCombineOutput.PredictorModel; var crossValidateOutput = experiment.Add(crossValidate); experiment.Compile(); experiment.SetInput(importInput.InputFile, new SimpleFileHandle(env, dataPath, false, false)); experiment.Run(); var data = experiment.GetOutput(crossValidateOutput.OverallMetrics); var schema = data.Schema; var b = schema.TryGetColumnIndex("AUC", out int metricCol); Assert.True(b); b = schema.TryGetColumnIndex("Fold Index", out int foldCol); Assert.True(b); using (var cursor = data.GetRowCursor(col => col == metricCol || col == foldCol)) { var getter = cursor.GetGetter <double>(metricCol); var foldGetter = cursor.GetGetter <DvText>(foldCol); DvText fold = default; // Get the verage. b = cursor.MoveNext(); Assert.True(b); double avg = 0; getter(ref avg); foldGetter(ref fold); Assert.True(fold.EqualsStr("Average")); // Get the standard deviation. b = cursor.MoveNext(); Assert.True(b); double stdev = 0; getter(ref stdev); foldGetter(ref fold); Assert.True(fold.EqualsStr("Standard Deviation")); Assert.Equal(0.00485, stdev, 5); double sum = 0; double val = 0; for (int f = 0; f < 2; f++) { b = cursor.MoveNext(); Assert.True(b); getter(ref val); foldGetter(ref fold); sum += val; Assert.True(fold.EqualsStr("Fold " + f)); } Assert.Equal(avg, sum / 2); b = cursor.MoveNext(); Assert.False(b); } } }
public void TestCrossValidationMacroMultiClassWithWarnings() { var dataPath = GetDataPath(@"Train-Tiny-28x28.txt"); using (var env = new TlcEnvironment(42)) { var subGraph = env.CreateExperiment(); var nop = new ML.Transforms.NoOperation(); var nopOutput = subGraph.Add(nop); var learnerInput = new ML.Trainers.LogisticRegressionClassifier { TrainingData = nopOutput.OutputData, NumThreads = 1 }; var learnerOutput = subGraph.Add(learnerInput); var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath); var importOutput = experiment.Add(importInput); var filter = new ML.Transforms.RowRangeFilter(); filter.Data = importOutput.Data; filter.Column = "Label"; filter.Min = 0; filter.Max = 5; var filterOutput = experiment.Add(filter); var term = new ML.Transforms.TextToKeyConverter(); term.Column = new[] { new ML.Transforms.TermTransformColumn() { Source = "Label", Name = "Strat", Sort = ML.Transforms.TermTransformSortOrder.Value } }; term.Data = filterOutput.OutputData; var termOutput = experiment.Add(term); var crossValidate = new ML.Models.CrossValidator { Data = termOutput.OutputData, Nodes = subGraph, Kind = ML.Models.MacroUtilsTrainerKinds.SignatureMultiClassClassifierTrainer, TransformModel = null, StratificationColumn = "Strat" }; crossValidate.Inputs.Data = nop.Data; crossValidate.Outputs.PredictorModel = learnerOutput.PredictorModel; var crossValidateOutput = experiment.Add(crossValidate); experiment.Compile(); importInput.SetInput(env, experiment); experiment.Run(); var warnings = experiment.GetOutput(crossValidateOutput.Warnings); var schema = warnings.Schema; var b = schema.TryGetColumnIndex("WarningText", out int warningCol); Assert.True(b); using (var cursor = warnings.GetRowCursor(col => col == warningCol)) { var getter = cursor.GetGetter <DvText>(warningCol); b = cursor.MoveNext(); Assert.True(b); var warning = default(DvText); getter(ref warning); Assert.Contains("test instances with class values not seen in the training set.", warning.ToString()); b = cursor.MoveNext(); Assert.True(b); getter(ref warning); Assert.Contains("Detected columns of variable length: SortedScores, SortedClasses", warning.ToString()); b = cursor.MoveNext(); Assert.False(b); } } }
public void TestSimpleTrainExperiment() { var dataPath = GetDataPath("adult.tiny.with-schema.txt"); using (var env = new TlcEnvironment()) { var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath); var importOutput = experiment.Add(importInput); var catInput = new ML.Transforms.CategoricalOneHotVectorizer { Data = importOutput.Data }; catInput.AddColumn("Categories"); var catOutput = experiment.Add(catInput); var concatInput = new ML.Transforms.ColumnConcatenator { Data = catOutput.OutputData }; concatInput.AddColumn("Features", "Categories", "NumericFeatures"); var concatOutput = experiment.Add(concatInput); var sdcaInput = new ML.Trainers.StochasticDualCoordinateAscentBinaryClassifier { TrainingData = concatOutput.OutputData, LossFunction = new HingeLossSDCAClassificationLossFunction() { Margin = 1.1f }, NumThreads = 1, Shuffle = false }; var sdcaOutput = experiment.Add(sdcaInput); var scoreInput = new ML.Transforms.DatasetScorer { Data = concatOutput.OutputData, PredictorModel = sdcaOutput.PredictorModel }; var scoreOutput = experiment.Add(scoreInput); var evalInput = new ML.Models.BinaryClassificationEvaluator { Data = scoreOutput.ScoredData }; var evalOutput = experiment.Add(evalInput); experiment.Compile(); experiment.SetInput(importInput.InputFile, new SimpleFileHandle(env, dataPath, false, false)); experiment.Run(); var data = experiment.GetOutput(evalOutput.OverallMetrics); var schema = data.Schema; var b = schema.TryGetColumnIndex("AUC", out int aucCol); Assert.True(b); using (var cursor = data.GetRowCursor(col => col == aucCol)) { var getter = cursor.GetGetter <double>(aucCol); b = cursor.MoveNext(); Assert.True(b); double auc = 0; getter(ref auc); Assert.Equal(0.93, auc, 2); b = cursor.MoveNext(); Assert.False(b); } } }
public void TestCrossValidationMacroWithMultiClass() { var dataPath = GetDataPath(@"Train-Tiny-28x28.txt"); using (var env = new TlcEnvironment(42)) { var subGraph = env.CreateExperiment(); var nop = new ML.Transforms.NoOperation(); var nopOutput = subGraph.Add(nop); var learnerInput = new ML.Trainers.StochasticDualCoordinateAscentClassifier { TrainingData = nopOutput.OutputData, NumThreads = 1 }; var learnerOutput = subGraph.Add(learnerInput); var modelCombine = new ML.Transforms.ManyHeterogeneousModelCombiner { TransformModels = new ArrayVar <ITransformModel>(nopOutput.Model), PredictorModel = learnerOutput.PredictorModel }; var modelCombineOutput = subGraph.Add(modelCombine); var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath); var importOutput = experiment.Add(importInput); var crossValidate = new ML.Models.CrossValidator { Data = importOutput.Data, Nodes = subGraph, Kind = ML.Models.MacroUtilsTrainerKinds.SignatureMultiClassClassifierTrainer, TransformModel = null }; crossValidate.Inputs.Data = nop.Data; crossValidate.Outputs.PredictorModel = modelCombineOutput.PredictorModel; var crossValidateOutput = experiment.Add(crossValidate); experiment.Compile(); importInput.SetInput(env, experiment); experiment.Run(); var data = experiment.GetOutput(crossValidateOutput.OverallMetrics); var schema = data.Schema; var b = schema.TryGetColumnIndex("Accuracy(micro-avg)", out int metricCol); Assert.True(b); b = schema.TryGetColumnIndex("Fold Index", out int foldCol); Assert.True(b); using (var cursor = data.GetRowCursor(col => col == metricCol || col == foldCol)) { var getter = cursor.GetGetter <double>(metricCol); var foldGetter = cursor.GetGetter <DvText>(foldCol); DvText fold = default; // Get the verage. b = cursor.MoveNext(); Assert.True(b); double avg = 0; getter(ref avg); foldGetter(ref fold); Assert.True(fold.EqualsStr("Average")); // Get the standard deviation. b = cursor.MoveNext(); Assert.True(b); double stdev = 0; getter(ref stdev); foldGetter(ref fold); Assert.True(fold.EqualsStr("Standard Deviation")); Assert.Equal(0.025, stdev, 3); double sum = 0; double val = 0; for (int f = 0; f < 2; f++) { b = cursor.MoveNext(); Assert.True(b); getter(ref val); foldGetter(ref fold); sum += val; Assert.True(fold.EqualsStr("Fold " + f)); } Assert.Equal(avg, sum / 2); b = cursor.MoveNext(); Assert.False(b); } var confusion = experiment.GetOutput(crossValidateOutput.ConfusionMatrix); schema = confusion.Schema; b = schema.TryGetColumnIndex("Count", out int countCol); Assert.True(b); b = schema.TryGetColumnIndex("Fold Index", out foldCol); Assert.True(b); var type = schema.GetMetadataTypeOrNull(MetadataUtils.Kinds.SlotNames, countCol); Assert.True(type != null && type.ItemType.IsText && type.VectorSize == 10); var slotNames = default(VBuffer <DvText>); schema.GetMetadata(MetadataUtils.Kinds.SlotNames, countCol, ref slotNames); Assert.True(slotNames.Values.Select((s, i) => s.EqualsStr(i.ToString())).All(x => x)); using (var curs = confusion.GetRowCursor(col => true)) { var countGetter = curs.GetGetter <VBuffer <double> >(countCol); var foldGetter = curs.GetGetter <DvText>(foldCol); var confCount = default(VBuffer <double>); var foldIndex = default(DvText); int rowCount = 0; var foldCur = "Fold 0"; while (curs.MoveNext()) { countGetter(ref confCount); foldGetter(ref foldIndex); rowCount++; Assert.True(foldIndex.EqualsStr(foldCur)); if (rowCount == 10) { rowCount = 0; foldCur = "Fold 1"; } } Assert.Equal(0, rowCount); } var warnings = experiment.GetOutput(crossValidateOutput.Warnings); using (var cursor = warnings.GetRowCursor(col => true)) Assert.False(cursor.MoveNext()); } }
public void TestCrossValidationMacro() { var dataPath = GetDataPath(TestDatasets.winequality.trainFilename); using (var env = new TlcEnvironment(42)) { var subGraph = env.CreateExperiment(); var nop = new ML.Transforms.NoOperation(); var nopOutput = subGraph.Add(nop); var generate = new ML.Transforms.RandomNumberGenerator(); generate.Column = new[] { new ML.Transforms.GenerateNumberTransformColumn() { Name = "Weight1" } }; generate.Data = nopOutput.OutputData; var generateOutput = subGraph.Add(generate); var learnerInput = new ML.Trainers.PoissonRegressor { TrainingData = generateOutput.OutputData, NumThreads = 1, WeightColumn = "Weight1" }; var learnerOutput = subGraph.Add(learnerInput); var modelCombine = new ML.Transforms.ManyHeterogeneousModelCombiner { TransformModels = new ArrayVar <ITransformModel>(nopOutput.Model, generateOutput.Model), PredictorModel = learnerOutput.PredictorModel }; var modelCombineOutput = subGraph.Add(modelCombine); var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath) { Arguments = new TextLoaderArguments { Separator = new[] { ';' }, HasHeader = true, Column = new[] { new TextLoaderColumn() { Name = "Label", Source = new [] { new TextLoaderRange(11) }, Type = ML.Data.DataKind.Num }, new TextLoaderColumn() { Name = "Features", Source = new [] { new TextLoaderRange(0, 10) }, Type = ML.Data.DataKind.Num } } } }; var importOutput = experiment.Add(importInput); var crossValidate = new ML.Models.CrossValidator { Data = importOutput.Data, Nodes = subGraph, Kind = ML.Models.MacroUtilsTrainerKinds.SignatureRegressorTrainer, TransformModel = null, WeightColumn = "Weight1" }; crossValidate.Inputs.Data = nop.Data; crossValidate.Outputs.PredictorModel = modelCombineOutput.PredictorModel; var crossValidateOutput = experiment.Add(crossValidate); experiment.Compile(); importInput.SetInput(env, experiment); experiment.Run(); var data = experiment.GetOutput(crossValidateOutput.OverallMetrics); var schema = data.Schema; var b = schema.TryGetColumnIndex("L1(avg)", out int metricCol); Assert.True(b); b = schema.TryGetColumnIndex("Fold Index", out int foldCol); Assert.True(b); b = schema.TryGetColumnIndex("IsWeighted", out int isWeightedCol); using (var cursor = data.GetRowCursor(col => col == metricCol || col == foldCol || col == isWeightedCol)) { var getter = cursor.GetGetter <double>(metricCol); var foldGetter = cursor.GetGetter <DvText>(foldCol); var isWeightedGetter = cursor.GetGetter <DvBool>(isWeightedCol); DvText fold = default; DvBool isWeighted = default; double avg = 0; double weightedAvg = 0; for (int w = 0; w < 2; w++) { // Get the average. b = cursor.MoveNext(); Assert.True(b); if (w == 1) { getter(ref weightedAvg); } else { getter(ref avg); } foldGetter(ref fold); Assert.True(fold.EqualsStr("Average")); isWeightedGetter(ref isWeighted); Assert.True(isWeighted.IsTrue == (w == 1)); // Get the standard deviation. b = cursor.MoveNext(); Assert.True(b); double stdev = 0; getter(ref stdev); foldGetter(ref fold); Assert.True(fold.EqualsStr("Standard Deviation")); if (w == 1) { Assert.Equal(0.002827, stdev, 6); } else { Assert.Equal(0.002376, stdev, 6); } isWeightedGetter(ref isWeighted); Assert.True(isWeighted.IsTrue == (w == 1)); } double sum = 0; double weightedSum = 0; for (int f = 0; f < 2; f++) { for (int w = 0; w < 2; w++) { b = cursor.MoveNext(); Assert.True(b); double val = 0; getter(ref val); foldGetter(ref fold); if (w == 1) { weightedSum += val; } else { sum += val; } Assert.True(fold.EqualsStr("Fold " + f)); isWeightedGetter(ref isWeighted); Assert.True(isWeighted.IsTrue == (w == 1)); } } Assert.Equal(weightedAvg, weightedSum / 2); Assert.Equal(avg, sum / 2); b = cursor.MoveNext(); Assert.False(b); } } }
public void TestCrossValidationBinaryMacro() { var dataPath = GetDataPath("adult.tiny.with-schema.txt"); using (var env = new TlcEnvironment()) { var subGraph = env.CreateExperiment(); var catInput = new ML.Transforms.CategoricalOneHotVectorizer(); catInput.AddColumn("Categories"); var catOutput = subGraph.Add(catInput); var concatInput = new ML.Transforms.ColumnConcatenator { Data = catOutput.OutputData }; concatInput.AddColumn("Features", "Categories", "NumericFeatures"); var concatOutput = subGraph.Add(concatInput); var lrInput = new ML.Trainers.LogisticRegressionBinaryClassifier { TrainingData = concatOutput.OutputData, NumThreads = 1 }; var lrOutput = subGraph.Add(lrInput); var modelCombine = new ML.Transforms.ManyHeterogeneousModelCombiner { TransformModels = new ArrayVar <ITransformModel>(catOutput.Model, concatOutput.Model), PredictorModel = lrOutput.PredictorModel }; var modelCombineOutput = subGraph.Add(modelCombine); var experiment = env.CreateExperiment(); var importInput = new ML.Data.TextLoader(dataPath); var importOutput = experiment.Add(importInput); var crossValidateBinary = new ML.Models.BinaryCrossValidator { Data = importOutput.Data, Nodes = subGraph }; crossValidateBinary.Inputs.Data = catInput.Data; crossValidateBinary.Outputs.Model = modelCombineOutput.PredictorModel; var crossValidateOutput = experiment.Add(crossValidateBinary); experiment.Compile(); importInput.SetInput(env, experiment); experiment.Run(); var data = experiment.GetOutput(crossValidateOutput.OverallMetrics[0]); var schema = data.Schema; var b = schema.TryGetColumnIndex("AUC", out int aucCol); Assert.True(b); using (var cursor = data.GetRowCursor(col => col == aucCol)) { var getter = cursor.GetGetter <double>(aucCol); b = cursor.MoveNext(); Assert.True(b); double auc = 0; getter(ref auc); Assert.Equal(0.87, auc, 1); b = cursor.MoveNext(); Assert.False(b); } } }