private static void Main() { // Create random data var r = new Random(); const int trainCount = 500; const int testCount = 100; var temp = Path.GetTempPath(); var trainDic = new StringBuilder(); var testDic = new StringBuilder(); var testDicAns = new List <int>(); for (var l = 0; l < 10; l++) { for (var i = 0; i < trainCount; i++) { // Create decimal value 0 or greater but less than 10 var v = r.NextDouble() + l; trainDic.AppendLine($"{l} 1:{v}"); } for (var i = 0; i < testCount; i++) { // Create decimal value 0 or greater but less than 10 var v = r.NextDouble() + l; testDic.AppendLine($"{l} 1:{v}"); testDicAns.Add(l); } } var tempTrainPath = Path.Combine(temp, "train"); var tempTestPath = Path.Combine(temp, "test"); using (var fs = new FileStream(tempTrainPath, FileMode.Create, FileAccess.Write, FileShare.Write)) using (var sw = new StreamWriter(fs, Encoding.ASCII)) sw.Write(trainDic.ToString()); using (var fs = new FileStream(tempTestPath, FileMode.Create, FileAccess.Write, FileShare.Write)) using (var sw = new StreamWriter(fs, Encoding.ASCII)) sw.Write(testDic.ToString()); // Load training data and test data set using (var train = Problem.FromFile(tempTrainPath)) using (var test = Problem.FromFile(tempTestPath)) { // Configure parameter var param = new Parameter { SvmType = SvmType.CSVC, KernelType = KernelType.RBF, Gamma = 0.05d, C = 5d, CacheSize = 100, Degree = 3, Coef0 = 0, Nu = 0.5, Epsilon = 1e-3, P = 0.1, Shrinking = true, Probability = false, WeightLabel = new int[0], Weight = new double[0] }; var message = LibSvm.CheckParameter(train, param); if (!string.IsNullOrWhiteSpace(message)) { Console.WriteLine($"Error: {message} for train problem"); return; } message = LibSvm.CheckParameter(test, param); if (!string.IsNullOrWhiteSpace(message)) { Console.WriteLine($"Error: {message} for test problem"); return; } // Train training data using (var model = LibSvm.Train(train, param)) { var correct = 0; var total = 0; var x = test.X; for (var i = 0; i < test.Length; i++) { // Get vector from test data var array = x[i]; // Get classification result (returns label) var ret1 = (int)LibSvm.Predict(model, array); if (ret1 == testDicAns[i]) { correct++; } total++; } Console.WriteLine($"Accuracy: {correct / (double)total * 100}%"); } } }
private static void Main(string[] args) { var app = new CommandLineApplication(false); app.Name = nameof(CrossValidation); app.Description = "The exsample program for cross validation"; app.HelpOption("-h|--help"); var quietArgument = app.Argument("quiet", "Suppress output of LIBSVM"); var foldOption = app.Option("-f|--fold", "K-fold. (An integer of not less than 0)", CommandOptionType.SingleValue); app.OnExecute(() => { if (quietArgument.Value != null) { LibSvm.SetPrintFunction(null); } if (!foldOption.HasValue()) { app.ShowHelp(); return(-1); } if (!int.TryParse(foldOption.Value(), out var fold)) { app.ShowHelp(); return(-1); } // Create random data var r = new Random(); const int trainCount = 500; var temp = Path.GetTempPath(); var trainDic = new StringBuilder(); for (var l = 0; l < 10; l++) { for (var i = 0; i < trainCount; i++) { // Create decimal value 0 or greater but less than 10 var v = r.NextDouble() + l; trainDic.AppendLine($"{l} 1:{v}"); } } var tempTrainPath = Path.Combine(temp, "train"); using (var fs = new FileStream(tempTrainPath, FileMode.Create, FileAccess.Write, FileShare.Write)) using (var sw = new StreamWriter(fs, Encoding.ASCII)) sw.Write(trainDic.ToString()); // Load training data and test data set using (var train = Problem.FromFile(tempTrainPath)) { // Configure parameter var param = new Parameter { SvmType = SvmType.CSVC, KernelType = KernelType.RBF, Gamma = 0.05d, C = 5d, CacheSize = 100, Degree = 3, Coef0 = 0, Nu = 0.5, Epsilon = 1e-3, P = 0.1, Shrinking = true, Probability = false, WeightLabel = new int[0], Weight = new double[0] }; var message = LibSvm.CheckParameter(train, param); if (!string.IsNullOrWhiteSpace(message)) { Console.WriteLine($"Error: {message} for train problem"); return(-1); } // Do cross validation LibSvm.CrossValidation(train, param, fold, out var target); var correct = 0; var total = 0; var y = train.Y; for (var i = 0; i < train.Length; i++) { // Compare predict result and train data label if ((int)y[i] == (int)target[i]) { correct++; } total++; } Console.WriteLine($"Accuracy: {correct / (double)total * 100}%"); } return(0); }); app.Execute(args); }
private static void Main(string[] args) { var app = new CommandLineApplication(false); app.Name = nameof(MNIST); app.Description = "The exsample program for MNIST"; app.HelpOption("-h|--help"); var quietArgument = app.Argument("quiet", "Suppress output of LIBSVM"); var outputOption = app.Option("-o|--output", "output path for trained model", CommandOptionType.SingleValue); app.OnExecute(() => { if (quietArgument.Value != null) { LibSvm.SetPrintFunction(null); } var output = outputOption.Value(); // Load training data and test data set using (var train = Problem.FromFile("mnist")) using (var test = Problem.FromFile("mnist.t")) { // Configure parameter var param = new Parameter { SvmType = SvmType.CSVC, KernelType = KernelType.Linear, Gamma = 0.05d, C = 5d, CacheSize = 1000, Degree = 3, Coef0 = 0, Nu = 0.5, Epsilon = 1e-3, P = 0.1, Shrinking = true, Probability = false, WeightLabel = new int[0], Weight = new double[0] }; var message = LibSvm.CheckParameter(train, param); if (!string.IsNullOrWhiteSpace(message)) { Console.WriteLine($"Error: {message} for train problem"); return(-1); } // Train training data var sw = new Stopwatch(); sw.Start(); using (var model = LibSvm.Train(train, param)) { sw.Stop(); if (!string.IsNullOrWhiteSpace(output)) { Model.Save(output, model); } var correct = 0; var total = 0; var x = test.X; var y = test.Y; for (var i = 0; i < test.Length; i++) { // Get vector from test data var array = x[i]; // Get classification result (returns label) var ret1 = (int)LibSvm.Predict(model, array); if (ret1 == (int)y[i]) { correct++; } total++; } Console.WriteLine($"Accuracy: {correct / (double)total * 100}%, Elapsed: {sw.ElapsedMilliseconds / 1000}s"); } } return(0); }); app.Execute(args); }
private static void Main() { // Create random data var r = new Random(); const int trainCount = 500; const int testCount = 100; var trainNodes = new List <Node[]>(); var trainLabels = new List <double>(); var testNodes = new List <Node[]>(); var testLabels = new List <double>(); for (var l = 0; l < 2; l++) { for (var i = 0; i < trainCount; i++) { // Create decimal value 0 or greater but less than 2 var v = r.NextDouble() + l; trainNodes.Add(new[] { new Node { Index = 0, Value = v } }); trainLabels.Add(l); } for (var i = 0; i < testCount; i++) { // Create decimal value 0 or greater but less than 2 var v = r.NextDouble() + l; testNodes.Add(new[] { new Node { Index = 0, Value = v } }); testLabels.Add(l); } } // Load training data and test data set using (var train = Problem.FromSequence(trainNodes, trainLabels)) using (var test = Problem.FromSequence(testNodes, testLabels)) { // Configure parameter var param = new Parameter { SvmType = SvmType.CSVC, KernelType = KernelType.RBF, Gamma = 0.05d, C = 5d, CacheSize = 100, Degree = 3, Coef0 = 0, Nu = 0.5, Epsilon = 1e-3, P = 0.1, Shrinking = true, Probability = false, WeightLabel = new int[0], Weight = new double[0] }; var message = LibSvm.CheckParameter(train, param); if (!string.IsNullOrWhiteSpace(message)) { Console.WriteLine($"Error: {message} for train problem"); return; } message = LibSvm.CheckParameter(test, param); if (!string.IsNullOrWhiteSpace(message)) { Console.WriteLine($"Error: {message} for test problem"); return; } // Train training data using (var model = LibSvm.Train(train, param)) { var correct = 0; var total = 0; var x = test.X; for (var i = 0; i < test.Length; i++) { // Get vector from test data var array = x[i]; // Get classification result (returns label) var ret1 = (int)LibSvm.Predict(model, array); if (ret1 == (int)testLabels[i]) { correct++; } total++; } Console.WriteLine($"Accuracy: {correct / (double)total * 100}%"); } } }