Пример #1
0
        public void performActions()
        {
            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0;
            double       Value2 = 0, Value3 = 0;
            double       ValueDIBit = 0, ValueDIPort = 0, ValueCounter = 0;

            // dummy variables to satisfy certian method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            // Open UE9
            try
            {
                ue9 = new UE9(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
                //ue9 = new UE9(LJUD.CONNECTION.ETHERNET, "192.168.1.50", true); // Connection through ethernet
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            try
            {
                //First some configuration commands.  These will be done with the ePut
                //function which combines the add/go/get into a single call.

                //Configure for 16-bit analog input measurements.
                LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, 16, 0);

                //Configure the analog input range on channels 2 and 3 for bipolar gain=1.
                LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 2, (double)LJUD.RANGES.BIP5V, 0);

                LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 3, (double)LJUD.RANGES.BIP5V, 0);

                //Enable Counter0 which will appear on FIO0 (assuming no other
                //program has enabled any timers or Counter1).
                LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 1, 0);


                //Now we add requests to write and read I/O.  These requests
                //will be processed repeatedly by go/get statements in every
                //iteration of the while loop below.

                //Request AIN2 and AIN3.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.GET_AIN, 2, 0, 0, 0);

                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.GET_AIN, 3, 0, 0, 0);

                //Set DAC0 to 2.5 volts.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_DAC, 0, 2.5, 0, 0);

                //Read digital input FIO1.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 1, 0, 0, 0);

                //Set digital output FIO2 to output-high.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_DIGITAL_BIT, 2, 1, 0, 0);

                //Read digital inputs FIO3 through FIO7.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 3, 0, 5, 0);

                //Request the value of Counter0.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.GET_COUNTER, 0, 0, 0, 0);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            bool requestedExit = false;

            while (!requestedExit)
            {
                try
                {
                    //Execute the requests.
                    LJUD.GoOne(ue9.ljhandle);

                    //Get all the results.  The input measurement results are stored.  All other
                    //results are for configuration or output requests so we are just checking
                    //whether there was an error.
                    LJUD.GetFirstResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    showErrorMessage(e);
                }

                bool isFinished = false;
                while (!isFinished)
                {
                    switch (ioType)
                    {
                    case LJUD.IO.GET_AIN:
                        switch ((int)channel)
                        {
                        case 2:
                            Value2 = dblValue;
                            break;

                        case 3:
                            Value3 = dblValue;
                            break;
                        }
                        break;

                    case LJUD.IO.GET_DIGITAL_BIT:
                        ValueDIBit = dblValue;
                        break;

                    case LJUD.IO.GET_DIGITAL_PORT:
                        ValueDIPort = dblValue;
                        break;

                    case LJUD.IO.GET_COUNTER:
                        ValueCounter = dblValue;
                        break;
                    }
                    try { LJUD.GetNextResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                    catch (LabJackUDException e)
                    {
                        // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                        if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                        {
                            isFinished = true;
                        }
                        else
                        {
                            showErrorMessage(e);
                        }
                    }
                }

                // Output the results
                Console.Out.WriteLine("AIN2 = {0:0.00000}\n", Value2);
                Console.Out.WriteLine("AIN3 = {0:0.00000}\n", Value3);
                Console.Out.WriteLine("FIO1 = {0:0.00000}\n", ValueDIBit);
                Console.Out.WriteLine("FIO3-FIO7 = {0:0.00000}\n", ValueDIPort);                         //Will read 31 if all 5 lines are pulled-high as normal.
                Console.Out.WriteLine("Counter0 (FIO0) = {0:0.00000}\n", ValueCounter);

                Console.Out.WriteLine("\nPress Enter to go again or (q) to quit\n");
                requestedExit = Console.ReadLine().Equals("q");
            }
        }
Пример #2
0
        public void performActions()
        {
            LJUD.IO      ioType      = 0;
            LJUD.CHANNEL channel     = 0;
            double       dblValue    = 0;
            int          dummyInt    = 0;
            double       dummyDouble = 0;

            // Open UE9
            try
            {
                ue9 = new UE9(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
                //ue9 = new UE9(LJUD.CONNECTION.ETHERNET, "192.168.1.50", true); // Connection through ethernet
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Disable all timers and counters to put everything in a known initial state.
            //Disable the timer and counter, and the FIO lines will return to digital I/O.
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 0, 0, 0);
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 0, 0, 0);
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 1, 0, 0, 0);
            LJUD.GoOne(ue9.ljhandle);


            //Output a PWM output on Timer0 (FIO0) and measure
            //the duty cycle on Timer1 FIO1 and Timer2 FIO2.

            //Use the fixed 750kHz timer clock source.
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_CLOCK_BASE, (double)LJUD.TIMERCLOCKS.KHZ750, 0, 0);

            //Set the divisor to 3 so the actual timer clock is 250kHz.
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_CLOCK_DIVISOR, 3, 0, 0);

            //Enable 2 timers.  They will use FIO0 and FIO1.
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 3, 0, 0);

            //Configure Timer0 as 8-bit PWM.  Frequency will be 250k/256 = 977 Hz.
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_TIMER_MODE, 0, (double)LJUD.TIMERMODE.PWM8, 0, 0);

            //Set the PWM duty cycle to 50%.  The passed value is the low time.
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 0, 32768, 0, 0);

            //Configure Timer1 and Timer2 as duty cycle measurement.
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_TIMER_MODE, 1, (double)LJUD.TIMERMODE.DUTYCYCLE, 0, 0);
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_TIMER_MODE, 2, (double)LJUD.TIMERMODE.DUTYCYCLE, 0, 0);


            //Execute the requests on a single LabJack.  The driver will use a
            //single low-level TimerCounter command to handle all the requests above.
            LJUD.GoOne(ue9.ljhandle);


            //Get all the results just to check for errors.
            LJUD.GetFirstResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
            bool isFinished = false;

            while (!isFinished)
            {
                try
                {
                    LJUD.GetNextResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            //Set the PWM duty cycle to 25%.  The passed value is the low time.
            LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 0, 49152, 0);
            //Now we will reset the duty cycle input timers, so we are sure the
            //reads we do are not old values from before the PWM output was updated.
            Thread.Sleep(10);
            LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, (LJUD.CHANNEL) 1, 0, 0);
            LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, (LJUD.CHANNEL) 2, 0, 0);

            //Wait a little so we are sure a duty cycle measurement has occured.
            Thread.Sleep(10);

            //Read from Timer1.
            ReadDutyCycle(ue9.ljhandle, 1);

            //Read from Timer2.
            ReadDutyCycle(ue9.ljhandle, 2);

            //Set the PWM duty cycle to 0%.  The passed value is the low time.
            //We are specifying 65535 out of 65536 clicks to be low.  Since
            //this is 8-bit PWM, we actually get 255 low clicks out of 256 total
            //clicks, so the minimum duty cycle is 0.4%.
            LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 0, 65535, 0);
            //Now we will reset the duty cycle input timers, so we are sure the
            //reads we do are not old values from before the PWM output was updated.
            Thread.Sleep(10);
            LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, (LJUD.CHANNEL) 1, 0, 0);
            LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, (LJUD.CHANNEL) 2, 0, 0);

            //Wait a little so we are sure a duty cycle measurement has occured.
            Thread.Sleep(10);

            //Read from Timer1.
            ReadDutyCycle(ue9.ljhandle, 1);

            //Read from Timer2.
            ReadDutyCycle(ue9.ljhandle, 2);

            //Set the PWM duty cycle to 100%.  The passed value is the low time.
            //We are specifying 0 out of 65536 clicks to be low, so the signal
            //will be high the entire time, meaning there are no edges
            //for the input timers to detect, and no measurement should be made.
            LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 0, 0, 0);
            //Now we will reset the duty cycle input timers, so we are sure the
            //reads we do are not old values from before the PWM output was updated.
            Thread.Sleep(10);
            LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, (LJUD.CHANNEL) 1, 0, 0);
            LJUD.ePut(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, (LJUD.CHANNEL) 2, 0, 0);

            //Wait a little so we are sure a duty cycle measurement has been attempted.
            Thread.Sleep(10);

            //Read from Timer1.
            ReadDutyCycle(ue9.ljhandle, 1);

            //Read from Timer2.
            ReadDutyCycle(ue9.ljhandle, 2);

            //Disable all timers and counters, and the FIO lines will return to digital I/O.
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 0, 0, 0);
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 0, 0, 0);
            LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 1, 0, 0, 0);
            LJUD.GoOne(ue9.ljhandle);

            Console.ReadLine();             // Pause for user
        }
Пример #3
0
        public void performActions()
        {
            long i = 0, k = 0;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0, dblCommBacklog = 0;

            // Dummy variables to satisfy certain method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            double[] dummyDoubleArray = { 0.0 };

            //The actual scan rate is determined by the external clock, but we need
            //an idea of how fast the scan rate will be so that we can make
            //the buffers big enough.  Also, the driver needs to have an idea of the
            //expected scan rate to help it decide how big of packets to transfer.
            double scanRate = 1000;
            int    delayms  = 1000;
            double numScans = 2000;              //2x the expected # of scans (2*scanRate*delayms/1000)
            double numScansRequested;

            double[] adblData = new double[12000];              //Max buffer size (#channels*numScansRequested)

            // Open UE9
            try
            {
                ue9 = new UE9(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
                //ue9 = new UE9(LJUD.CONNECTION.ETHERNET, "192.168.1.50", true); // Connection through ethernet
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            try
            {
                //Make sure the UE9 is not streaming.
                LJUD.eGet(ue9.ljhandle, LJUD.IO.STOP_STREAM, (LJUD.CHANNEL) 0, ref dummyDouble, 0);
            }
            catch (LabJackUDException e)
            {
                // If the error indicates that the stream could not be stopped it is because the stream has not started yet and can be ignored
                if (e.LJUDError != LJUD.LJUDERROR.UNABLE_TO_STOP_STREAM)
                {
                    showErrorMessage(e);
                }
            }

            try
            {
                //Disable all timers and counters to put everything in a known initial state.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 0, 0, 0);
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 0, 0, 0);
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 1, 0, 0, 0);
                LJUD.GoOne(ue9.ljhandle);


                //First we will configure Timer0 as system timer low and configure Timer1 to
                //output a 1000 Hz square wave.

                //Use the fixed 750kHz timer clock source.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_CLOCK_BASE, (double)LJUD.TIMERCLOCKS.KHZ750, 0, 0);

                //Set the divisor to 3 so the actual timer clock is 250 kHz.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_CLOCK_DIVISOR, 3, 0, 0);

                //Enable 2 timers.  They will use FIO0-FIO1.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 2, 0, 0);

                //Configure Timer0 as system timer low.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_TIMER_MODE, (LJUD.CHANNEL) 0, (double)LJUD.TIMERMODE.SYSTIMERLOW, 0, 0);

                //Configure Timer1 as frequency output.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_TIMER_MODE, (LJUD.CHANNEL) 1, (double)LJUD.TIMERMODE.FREQOUT, 0, 0);

                //Set the frequency output on Timer1 to 1000 Hz (250000/(2*125) = 1000).
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 1, 125, 0, 0);

                //Execute the requests on a single LabJack.  The driver will use a
                //single low-level TimerCounter command to handle all the requests above.
                LJUD.GoOne(ue9.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Get all the results just to check for errors.
            bool isFinished = false;

            try { LJUD.GetFirstResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
            catch (LabJackUDException e) { showErrorMessage(e); }
            while (!isFinished)
            {
                try
                {
                    LJUD.GetNextResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            try
            {
                //Configure the stream:
                //Configure resolution for all analog inputs.  Since the test external clock
                //is at 1000 Hz, and we are scanning 6 channels, we will have a
                //sample rate of 6000 samples/second.  That means the maximum resolution
                //we could use is 13-bit.  We will use 12-bit in this example.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, 12, 0, 0);
                //Configure the analog input range on channel 0 for bipolar +-5 volts.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_AIN_RANGE, 0, (double)LJUD.RANGES.BIP5V, 0, 0);
                //Configure the analog input range on channel 1 for bipolar +-5 volts.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_AIN_RANGE, 1, (double)LJUD.RANGES.BIP5V, 0, 0);
                //Give the driver a 5 second buffer (scanRate * 6 channels * 5 seconds).
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_BUFFER_SIZE, scanRate * 6 * 5, 0, 0);
                //Configure reads to retrieve whatever data is available without waiting (wait mode LJ_swNONE).
                //See comments below to change this program to use LJ_swSLEEP mode.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_WAIT_MODE, (double)LJUD.STREAMWAITMODES.NONE, 0, 0);
                //Configure for external triggering.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_EXTERNAL_TRIGGER, 1, 0, 0);
                //Define the scan list.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.CLEAR_STREAM_CHANNELS, 0, 0, 0, 0);
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 0, 0, 0, 0);                  //AIN0
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 1, 0, 0, 0);                  //AIN1
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 193, 0, 0, 0);                //EIO_FIO
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 194, 0, 0, 0);                //MIO_CIO
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 200, 0, 0, 0);                //Timer0 LSW
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 224, 0, 0, 0);                //Timer0 MSW

                //Execute the list of requests.
                LJUD.GoOne(ue9.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Get all the results just to check for errors.
            try { LJUD.GetFirstResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
            catch (LabJackUDException e) { showErrorMessage(e); }
            isFinished = false;
            while (!isFinished)
            {
                try
                {
                    LJUD.GetNextResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            try
            {
                //Start the stream.
                LJUD.eGet(ue9.ljhandle, LJUD.IO.START_STREAM, 0, ref dblValue, 0);

                //Read data
                while (Win32Interop._kbhit() == 0)                      //Loop will run until any key is hit
                {
                    //Since we are using wait mode LJUD.STREAMWAITMODES.NONE, we will wait a little, then
                    //read however much data is available.  Thus this delay will control how
                    //fast the program loops and how much data is read each loop.  An
                    //alternative common method is to use wait mode LJUD.STREAMWAITMODES.SLEEP where the
                    //stream read waits for a certain number of scans.  In such a case
                    //you would not have a delay here, since the stream read will actually
                    //control how fast the program loops.
                    //
                    //To change this program to use sleep mode,
                    //	-change numScans to the actual number of scans desired per read,
                    //	-change wait mode addrequest value to LJ_swSLEEP,
                    //	-comment out the following Sleep command.

                    Thread.Sleep(delayms);                      //Remove if using LJUD.STREAMWAITMODES.SLEEP

                    //init array so we can easily tell if it has changed
                    for (k = 0; k < numScans * 2; k++)
                    {
                        adblData[k] = 9999.0;
                    }

                    //Read the data.  We will request twice the number we expect, to
                    //make sure we get everything that is available.
                    //Note that the array we pass must be sized to hold enough SAMPLES, and
                    //the Value we pass specifies the number of SCANS to read.
                    numScansRequested = numScans;
                    LJUD.eGet(ue9.ljhandle, LJUD.IO.GET_STREAM_DATA, LJUD.CHANNEL.ALL_CHANNELS, ref numScansRequested, adblData);
                    //This displays the number of scans that were actually read.
                    Console.Out.WriteLine("\nIteration # {0:0.###}\n", i);
                    Console.Out.WriteLine("Number read = {0:0.###}\n", numScansRequested);
                    //This displays just the first scan.
                    Console.Out.WriteLine("First scan = {0:0.###},{0:0.###},{0:0.###},{0:0.###},{0:0.###},{0:0.###}\n", adblData[0], adblData[1], adblData[2], adblData[3], adblData[4], adblData[5]);
                    //Retrieve the current Comm backlog.  The UD driver retrieves stream data from
                    //the UE9 in the background, but if the computer is too slow for some reason
                    //the driver might not be able to read the data as fast as the UE9 is
                    //acquiring it, and thus there will be data left over in the UE9 buffer.
                    LJUD.eGet(ue9.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.STREAM_BACKLOG_COMM, ref dblCommBacklog, 0);
                    Console.Out.WriteLine("Comm Backlog = {0:0.###}\n", dblCommBacklog);
                    i++;
                }


                //Stop the stream
                LJUD.eGet(ue9.ljhandle, LJUD.IO.STOP_STREAM, 0, ref dummyDouble, 0);

                //Disable the timers.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 0, 0, 0);
                LJUD.GoOne(ue9.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            Console.Out.WriteLine("\nDone");
            Console.ReadLine();             // Pause for user
            return;
        }
Пример #4
0
        /// <summary>
        /// Actually performs actions on the U3 and updates the displaye
        /// </summary>
        /// <param name="sender">The object that executed this method</param>
        /// <param name="e">Event parameters</param>
        private void goButton_Click(object sender, System.EventArgs e)
        {
            double dblDriverVersion;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0;
            double       Value0 = 9999, Value1 = 9999, Value2 = 9999;
            double       ValueDIBit = 9999, ValueDIPort = 9999, ValueCounter = 9999;

            // Variables to satisfy certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;

            //Read and display the UD version.
            dblDriverVersion    = LJUD.GetDriverVersion();
            versionDisplay.Text = String.Format("{0:0.000}", dblDriverVersion);

            try
            {
                //Open the first found LabJack U3.
                u3 = new U3(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB

                //Start by using the pin_configuration_reset IOType so that all
                //pin assignments are in the factory default condition.
                LJUD.ePut(u3.ljhandle, LJUD.IO.PIN_CONFIGURATION_RESET, 0, 0, 0);

                //First some configuration commands.  These will be done with the ePut
                //function which combines the add/go/get into a single call.

                //Configure FIO0-FIO3 as analog, all else as digital.  That means we
                //will start from channel 0 and update all 16 flexible bits.  We will
                //pass a value of b0000000000001111 or d15.
                LJUD.ePut(u3.ljhandle, LJUD.IO.PUT_ANALOG_ENABLE_PORT, 0, 15, 16);

                //Set the timer/counter pin offset to 7, which will put the first
                //timer/counter on FIO7.
                LJUD.ePut(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_COUNTER_PIN_OFFSET, 7, 0);

                //Enable Counter1 (FIO7).
                LJUD.ePut(u3.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, (LJUD.CHANNEL) 1, 1, 0);

                //The following commands will use the add-go-get method to group
                //multiple requests into a single low-level function.

                //Request a single-ended reading from AIN0.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.GET_AIN, 0, 0, 0, 0);

                //Request a single-ended reading from AIN1.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.GET_AIN, 1, 0, 0, 0);

                //Request a reading from AIN2 using the Special range.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.GET_AIN_DIFF, 2, 0, 32, 0);

                //Read digital input FIO5.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 5, 0, 0, 0);

                //Read digital inputs FIO5 through FIO6.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 5, 0, 2, 0);

                //Request the value of Counter1 (FIO7).
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.GET_COUNTER, 1, 0, 0, 0);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            try
            {
                //Execute the requests.
                LJUD.GoOne(u3.ljhandle);

                //Get all the results.  The input measurement results are stored.  All other
                //results are for configuration or output requests so we are just checking
                //whether there was an error.
                LJUD.GetFirstResult(u3.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            bool finished = false;

            while (!finished)
            {
                switch (ioType)
                {
                case LJUD.IO.GET_AIN:
                    switch ((int)channel)
                    {
                    case 0:
                        Value0 = dblValue;
                        break;

                    case 1:
                        Value1 = dblValue;
                        break;
                    }
                    break;

                case LJUD.IO.GET_AIN_DIFF:
                    Value2 = dblValue;
                    break;

                case LJUD.IO.GET_DIGITAL_BIT:
                    ValueDIBit = dblValue;
                    break;

                case LJUD.IO.GET_DIGITAL_PORT:
                    ValueDIPort = dblValue;
                    break;

                case LJUD.IO.GET_COUNTER:
                    ValueCounter = dblValue;
                    break;
                }
                try { LJUD.GetNextResult(u3.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException exc)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (exc.LJUDError == U3.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        finished = true;
                    }
                    else
                    {
                        ShowErrorMessage(exc);
                    }
                }
            }

            // Display results
            ain0Display.Text     = String.Format("{0:0.###}", Value0);
            ain1Display.Text     = String.Format("{0:0.###}", Value1);
            ain2Display.Text     = String.Format("{0:0.###}", Value2);
            fio5Display.Text     = String.Format("{0:0.###}", ValueDIBit);
            fio6Display.Text     = String.Format("{0:0.###}", ValueDIPort);         //Will read 3 (binary 11) if both lines are pulled-high as normal.
            counter1Display.Text = String.Format("{0:0.###}", ValueCounter);
        }
Пример #5
0
        public void performActions()
        {
            long i = 0, k = 0;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0, dblCommBacklog = 0, dblUDBacklog = 0;
            double       scanRate = 1000;        //scan rate = sample rate / #channels
            int          delayms  = 1000;
            double       numScans = 2000;        //Max number of scans per read.  2x the expected # of scans (2*scanRate*delayms/1000).
            double       numScansRequested;

            double[] adblData     = new double[4000];          //Max buffer size (#channels*numScansRequested)

            // Dummy variables to satisfy certain method signatures
            double dummyDouble = 0;

            double[] dummyDoubleArray = { 0 };
            int      dummyInt         = 0;

            // Open U6
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            try
            {
                //Configure the stream:

                //Configure the resolution of the analog inputs (pass a non-zero value for quick sampling).
                //See section 2.6 / 3.1 for more information.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, 0, 0, 0);

                //Configure the analog input range on channel 0 for bipolar +-10 volts.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, 0, (double)LJUD.RANGES.BIP10V, 0, 0);

                //Set the scan rate.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_SCAN_FREQUENCY, scanRate, 0, 0);

                //Give the driver a 5 second buffer (scanRate * 2 channels * 5 seconds).
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_BUFFER_SIZE, scanRate * 2 * 5, 0, 0);

                //Configure reads to retrieve whatever data is available without waiting (wait mode LJUD.STREAMWAITMODES.NONE).
                //See comments below to change this program to use LJUD.STREAMWAITMODES.SLEEP mode.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_WAIT_MODE, (double)LJUD.STREAMWAITMODES.NONE, 0, 0);

                //Define the scan list as AIN0 then AIN1.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.CLEAR_STREAM_CHANNELS, 0, 0, 0, 0);
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 0, 0, 0, 0);
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 1, 0, 0, 0);

                //Execute the list of requests.
                LJUD.GoOne(u6.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            // Get results until there is no more data available for error checking
            bool isFinished = false;

            while (!isFinished)
            {
                try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dummyDouble, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (e.LJUDError == U6.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            //Start the stream.
            LJUD.eGet(u6.ljhandle, LJUD.IO.START_STREAM, 0, ref dblValue, 0);

            //The actual scan rate is dependent on how the desired scan rate divides into
            //the LabJack clock.  The actual scan rate is returned in the value parameter
            //from the start stream command.
            Console.Out.WriteLine("Actual Scan Rate = {0:0.###}\n", dblValue);
            Console.Out.WriteLine("Actual Sample Rate = {0:0.###}\n", 2 * dblValue);

            //Read data
            while (Win32Interop._kbhit() == 0)                  //Loop will run until any key is hit
            {
                //Since we are using wait mode LJUD.STREAMWAITMODES.NONE, we will wait a little, then
                //read however much data is available.  Thus this delay will control how
                //fast the program loops and how much data is read each loop.  An
                //alternative common method is to use wait mode LJUD.STREAMWAITMODES.SLEEP where the
                //stream read waits for a certain number of scans.  In such a case
                //you would not have a delay here, since the stream read will actually
                //control how fast the program loops.
                //
                //To change this program to use sleep mode,
                //	-change numScans to the actual number of scans desired per read,
                //	-change wait mode addrequest value to LJUD.STREAMWAITMODES.SLEEP,
                //	-comment out the following Thread.Sleep command.

                Thread.Sleep(delayms);                  //Remove if using LJUD.STREAMWAITMODES.SLEEP.

                //init array so we can easily tell if it has changed
                for (k = 0; k < numScans * 2; k++)
                {
                    adblData[k] = 9999.0;
                }

                //Read the data.  We will request twice the number we expect, to
                //make sure we get everything that is available.
                //Note that the array we pass must be sized to hold enough SAMPLES, and
                //the Value we pass specifies the number of SCANS to read.
                numScansRequested = numScans;
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_STREAM_DATA, LJUD.CHANNEL.ALL_CHANNELS, ref numScansRequested, adblData);

                //The displays the number of scans that were actually read.
                Console.Out.WriteLine("\nIteration # {0:0}\n", i);
                Console.Out.WriteLine("Number scans read = {0:0}\n", numScansRequested);

                //Display just the first scan.
                Console.Out.WriteLine("First scan = {0:0.###}, {1:0.###}\n", adblData[0], adblData[1]);

                //Retrieve the current Comm backlog.  The UD driver retrieves stream data from
                //the U6 in the background, but if the computer is too slow for some reason
                //the driver might not be able to read the data as fast as the U6 is
                //acquiring it, and thus there will be data left over in the U6 buffer.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.STREAM_BACKLOG_COMM, ref dblCommBacklog, 0);
                Console.Out.WriteLine("Comm Backlog = {0:0.###}\n", dblCommBacklog);

                //Retrieve the current UD driver backlog.  If this is growing, then the application
                //software is not pulling data from the UD driver fast enough.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.STREAM_BACKLOG_UD, ref dblUDBacklog, 0);
                Console.Out.WriteLine("UD Backlog = {0:0.###}\n", dblUDBacklog);

                i++;
            }


            //Stop the stream
            LJUD.eGet(u6.ljhandle, LJUD.IO.STOP_STREAM, 0, ref dummyDouble, dummyDoubleArray);


            Console.Out.WriteLine("\nDone");
            Console.ReadLine();             // Pause for user
        }
Пример #6
0
        public void performActions()
        {
            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;
            double       numSPIBytesToTransfer;

            byte[] dataArray = new byte[50];

            // Variables to satsify certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;


            try
            {
                //Open the LabJack U3.
                u3 = new U3(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB

                //Start by using the pin_configuration_reset IOType so that all
                //pin assignments are in the factory default condition.
                LJUD.ePut(u3.ljhandle, LJUD.IO.PIN_CONFIGURATION_RESET, 0, 0, 0);

                //First, configure the SPI communication.

                //Enable automatic chip-select control.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_AUTO_CS, 1, 0, 0);

                //Do not disable automatic digital i/o direction configuration.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_DISABLE_DIR_CONFIG, 0, 0, 0);

                //Mode A:  CPHA=1, CPOL=1.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_MODE, 0, 0, 0);

                //125kHz clock.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_CLOCK_FACTOR, 0, 0, 0);

                //MOSI is FIO6
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_MOSI_PIN_NUM, 6, 0, 0);

                //MISO is FIO7
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_MISO_PIN_NUM, 7, 0, 0);

                //CLK is FIO4
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_CLK_PIN_NUM, 4, 0, 0);

                //CS is FIO5
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.SPI_CS_PIN_NUM, 5, 0, 0);


                //Execute the requests on a single LabJack.  The driver will use a
                //single low-level TimerCounter command to handle all the requests above.
                LJUD.GoOne(u3.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Get all the results just to check for errors.
            try { LJUD.GetFirstResult(u3.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
            catch (LabJackUDException e) { showErrorMessage(e); }
            bool finished = false;

            while (!finished)
            {
                try { LJUD.GetNextResult(u3.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        finished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            //This example transfers 4 test bytes.
            numSPIBytesToTransfer = 4;
            dataArray[0]          = 170;
            dataArray[1]          = 240;
            dataArray[2]          = 170;
            dataArray[3]          = 240;

            //Transfer the data.  The write and read is done at the same time.
            try{ LJUD.eGet(u3.ljhandle, LJUD.IO.SPI_COMMUNICATION, 0, ref numSPIBytesToTransfer, dataArray); }
            catch (LabJackUDException e) { showErrorMessage(e); }

            //Display the read data.
            Console.Out.WriteLine("dataArray[0] = {0:0.#}\n", dataArray[0]);
            Console.Out.WriteLine("dataArray[1] = {0:0.#}\n", dataArray[1]);
            Console.Out.WriteLine("dataArray[2] = {0:0.#}\n", dataArray[2]);
            Console.Out.WriteLine("dataArray[3] = {0:0.#}\n", dataArray[3]);


            Console.ReadLine();             // Pause for user
        }
Пример #7
0
        public void performActions()
        {
            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;

            double numI2CBytesToWrite;
            double numI2CBytesToRead;

            byte[] writeArray = new byte[128];
            byte[] readArray = new byte[128];
            long   i = 0;
            long   serialNumber = 0;
            double slopeDACA = 0, offsetDACA = 0, slopeDACB = 0, offsetDACB = 0;
            double writeACKS = 0, expectedACKS = 0;

            byte[] bytes;

            // Dummy variables to satify certain method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            // Setup random number generator
            Random random = new Random();

            //Open the LabJack.
            try
            {
                device = new UE9(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Configure the I2C communication.
            //The address of the EEPROM on the LJTick-DAC is 0xA0.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_ADDRESS_BYTE, 160, 0, 0);

            //SCL is FIO0
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_SCL_PIN_NUM, 0, 0, 0);

            //SDA is FIO1
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_SDA_PIN_NUM, 1, 0, 0);

            //See description of low-level I2C function.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_OPTIONS, 0, 0, 0);

            //See description of low-level I2C function.  0 is max speed of about 130 kHz.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_SPEED_ADJUST, 0, 0, 0);

            //Execute the requests on a single LabJack.
            LJUD.GoOne(device.ljhandle);


            //Get all the results just to check for errors.
            LJUD.GetFirstResult(device.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
            bool finished = false;

            while (!finished)
            {
                try{ LJUD.GetNextResult(device.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)
                {
                    if (e.LJUDError == LJUD.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        finished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            //Initial read of EEPROM bytes 0-3 in the user memory area.
            //We need a single I2C transmission that writes the address and then reads
            //the data.  That is, there needs to be an ack after writing the address,
            //not a stop condition.  To accomplish this, we use Add/Go/Get to combine
            //the write and read into a single low-level call.
            numI2CBytesToWrite = 1;
            writeArray[0]      = 0;         //Memory address.  User area is 0-63.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            numI2CBytesToRead = 4;
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, numI2CBytesToRead, readArray, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }


            //When the GoOne processed the read request, the read data was put into the readArray buffer that
            //we passed, so this GetResult is also just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, ref dummyDouble);

            //Display the first 4 elements.
            Console.Out.WriteLine("Read User Mem [0-3] = {0:0.#}, {1:0.#}, {2:0.#}, {3:0.#}\n", readArray[0], readArray[1], readArray[2], readArray[3]);



            //Write EEPROM bytes 0-3 in the user memory area, using the page write technique.  Note
            //that page writes are limited to 16 bytes max, and must be aligned with the 16-byte
            //page intervals.  For instance, if you start writing at address 14, you can only write
            //two bytes because byte 16 is the start of a new page.
            numI2CBytesToWrite = 5;
            writeArray[0]      = 0;         //Memory address.  User area is 0-63.

            //Create 4 new pseudo-random numbers to write.
            for (i = 1; i < 5; i++)
            {
                writeArray[i] = (byte)random.Next(256);
            }

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            //Delay to allow the EEPROM to complete the write cycle.  Datasheet says 1.5 ms max.
            System.Threading.Thread.Sleep(2);

            Console.Out.WriteLine("Write User Mem [0-3] = {0:0.#}, {1:0.#}, {2:0.#}, {3:0.#}\n", writeArray[1], writeArray[2], writeArray[3], writeArray[4]);


            //Final read of EEPROM bytes 0-3 in the user memory area.
            //We need a single I2C transmission that writes the address and then reads
            //the data.  That is, there needs to be an ack after writing the address,
            //not a stop condition.  To accomplish this, we use Add/Go/Get to combine
            //the write and read into a single low-level call.
            numI2CBytesToWrite = 1;
            writeArray[0]      = 0;         //Memory address.  User area is 0-63.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            numI2CBytesToRead = 4;
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, numI2CBytesToRead, readArray, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            //When the GoOne processed the read request, the read data was put into the readArray buffer that
            //we passed, so this GetResult is also just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, ref dummyDouble);

            //Display the first 4 elements.
            Console.Out.WriteLine("Read User Mem [0-3] = {0:0.#}, {1:0.#}, {2:0.#}, {3:0.#}\n\n", readArray[0], readArray[1], readArray[2], readArray[3]);

            //Read cal constants and serial number.
            //We need a single I2C transmission that writes the address and then reads
            //the data.  That is, there needs to be an ack after writing the address,
            //not a stop condition.  To accomplish this, we use Add/Go/Get to combine
            //the write and read into a single low-level call.
            //
            //64-71   DACA Slope
            //72-79   DACA Offset
            //80-87   DACB Slope
            //88-95   DACB Offset
            //96-99   Serial Number
            //
            numI2CBytesToWrite = 1;
            writeArray[0]      = 64;         //Memory address.  Cal constants start at 64.
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            numI2CBytesToRead = 36;
            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, numI2CBytesToRead, readArray, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            //When the GoOne processed the read request, the read data was put into the readArray buffer that
            //we passed, so this GetResult is also just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_READ, ref dummyDouble);

            //Convert fixed point values to floating point doubles.
            slopeDACA  = BitConverter.ToInt64(readArray, 0) / (double)4294967296;
            offsetDACA = BitConverter.ToInt64(readArray, 8) / (double)4294967296;
            slopeDACB  = BitConverter.ToInt64(readArray, 16) / (double)4294967296;
            offsetDACB = BitConverter.ToInt64(readArray, 24) / (double)4294967296;
            Console.Out.WriteLine("DACA Slope = {0:0.0} bits/volt\n", slopeDACA);
            Console.Out.WriteLine("DACA Offset = {0:0.0} bits\n", offsetDACA);
            Console.Out.WriteLine("DACB Slope = {0:0.0} bits/volt\n", slopeDACB);
            Console.Out.WriteLine("DACB Offset = {0:0.0} bits\n", offsetDACB);

            //Convert serial number bytes to long.
            serialNumber = (int)readArray[32] + ((int)readArray[33] << 8) + ((int)readArray[34] << 16) + ((int)readArray[35] << 24);
            Console.Out.WriteLine("Serial Number = {0:0.#}\n\n", serialNumber);

            //Update both DAC outputs.

            //Set the I2C address in the UD driver so that we not talk to the DAC chip.
            //The address of the DAC chip on the LJTick-DAC is 0x24.
            LJUD.ePut(device.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.I2C_ADDRESS_BYTE, 36, 0);


            ///Set DACA to 2.3 volts.
            numI2CBytesToWrite = 3;
            writeArray[0]      = 48;                                                            //Write and update DACA.
            writeArray[1]      = Convert.ToByte((ulong)((2.3 * slopeDACA) + offsetDACA) / 256); //Upper byte of binary DAC value.
            writeArray[2]      = Convert.ToByte((ulong)((2.3 * slopeDACA) + offsetDACA) % 256); //Lower byte of binary DAC value.

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            Console.Out.WriteLine("DACA set to 2.3 volts\n\n");

            //Set DACB to 1.5 volts.
            numI2CBytesToWrite = 3;
            writeArray[0]      = 49;                                                            //Write and update DACB.
            writeArray[1]      = Convert.ToByte((ulong)((1.5 * slopeDACB) + offsetDACB) / 256); //Upper byte of binary DAC value.
            writeArray[2]      = Convert.ToByte((ulong)((1.5 * slopeDACB) + offsetDACB) % 256); //Lower byte of binary DAC value.

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, numI2CBytesToWrite, writeArray, 0);

            LJUD.AddRequest(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, 0, 0, 0);

            //Execute the requests.
            LJUD.GoOne(device.ljhandle);

            //Get the result of the write just to check for an error.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_WRITE, ref dummyDouble);

            //Get the write ACKs and compare to the expected value.  We expect bit 0 to be
            //the ACK of the last data byte progressing up to the ACK of the address
            //byte (data bytes only for Control firmware 1.43 and less).  So if n is the
            //number of data bytes, the ACKs value should be (2^(n+1))-1.
            LJUD.GetResult(device.ljhandle, LJUD.IO.I2C_COMMUNICATION, LJUD.CHANNEL.I2C_GET_ACKS, ref writeACKS);
            expectedACKS = Math.Pow(2, numI2CBytesToWrite + 1) - 1;
            if (writeACKS != expectedACKS)
            {
                Console.Out.WriteLine("Expected ACKs = {0:0}, Received ACKs = %0.f\n", expectedACKS, writeACKS);
            }

            Console.Out.WriteLine("DACB set to 1.5 volts\n");

            Console.ReadLine();             // Pause for user	return;
        }
Пример #8
0
        /// <summary>
        /// Opens the LabJack, gets the UD driver version, and
        /// configures the device.
        /// </summary>
        /// <param name="sender">The object that called this event</param>
        /// <param name="e">Event details</param>
        private void TimedWindow_Load(object sender, System.EventArgs e)
        {
            double dblDriverVersion;

            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;

            // dummy variables to satisfy certian method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            // Create the event timer but do not start it yet
            updateTimer          = new System.Timers.Timer();
            updateTimer.Elapsed += new ElapsedEventHandler(TimerEvent);
            updateTimer.Interval = TIMER_INTERVAL;

            // Disable the start button while the device is loading
            goStopButton.Enabled = false;
            Update();

            //Read and display the UD version.
            dblDriverVersion    = LJUD.GetDriverVersion();
            versionDisplay.Text = String.Format("{0:0.000}", dblDriverVersion);

            // Open and configure UE9
            try
            {
                //Open the device
                ue9 = new UE9(LJUD.CONNECTION.USB, "0", true);

                //Configure for 16-bit analog input measurements.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, 16, 0, 0);

                //Configure the analog input range on channels 2 and 3 for bipolar 5v.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 2, (double)LJUD.RANGES.BIP5V, 0, 0);
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 3, (double)LJUD.RANGES.BIP5V, 0, 0);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            try
            {
                //Execute the requests.
                LJUD.GoOne(ue9.ljhandle);

                //Get all the results.  The input measurement results are stored.  All other
                //results are for configuration or output requests so we are just checking
                //whether there was an error. The rest of the results are in the below loop.
                LJUD.GetFirstResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            bool isFinished = false;

            while (!isFinished)
            {
                try { LJUD.GetNextResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException exc)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (exc.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        ShowErrorMessage(exc);
                        return;
                    }
                }
            }

            // Enable the start button
            goStopButton.Enabled = true;
        }
Пример #9
0
        /// <summary>
        /// performs read on LabJack device
        /// </summary>
        /// <param name="source">The object that called the event</param>
        /// <param name="e">Event details</param>
        public void TimerEvent(object source, ElapsedEventArgs e)
        {
            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0;
            double       Value2 = 0, Value3 = 0;
            double       ValueDIBit = 0;

            // dummy variables to satisfy certian method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            try
            {
                //Now we add requests to write and read I/O.  These requests
                //will be processed repeatedly by go/get statements in every
                //iteration of the while loop below.

                //Request AIN2 and AIN3.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.GET_AIN, 2, 0, 0, 0);
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.GET_AIN, 3, 0, 0, 0);

                //Read digital input FIO1.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 1, 0, 0, 0);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            try
            {
                //Execute the requests.
                LJUD.GoOne(ue9.ljhandle);

                //Get all the results.  The input measurement results are stored.  All other
                //results are for configuration or output requests so we are just checking
                //whether there was an error. The rest of the results are in the below loop.
                LJUD.GetFirstResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            bool isFinished = false;

            while (!isFinished)
            {
                switch (ioType)
                {
                case LJUD.IO.GET_AIN:
                    switch ((int)channel)
                    {
                    case 2:
                        Value2 = dblValue;
                        break;

                    case 3:
                        Value3 = dblValue;
                        break;
                    }
                    break;

                case LJUD.IO.GET_DIGITAL_BIT:
                    ValueDIBit = dblValue;
                    break;
                }
                try { LJUD.GetNextResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException exc)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (exc.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        ShowErrorMessage(exc);
                        return;
                    }
                }
            }

            // Display results
            ain2Display.Text = String.Format("{0:0.###}", Value2);
            ain3Display.Text = String.Format("{0:0.###}", Value3);
            fio1Display.Text = String.Format("{0:0.###}", ValueDIBit);
        }
Пример #10
0
        public void performActions()
        {
            long lngGetNextIteration;

            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;

            // Dummy variables to complete certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;

            // Open UE9
            try
            {
                ue9 = new UE9(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
                //ue9 = new UE9(LJUD.CONNECTION.ETHERNET, "192.168.1.50", true); // Connection through ethernet
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            try
            {
                //Disable all timers and counters to put everything in a known initial state.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 0, 0, 0);
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 0, 0, 0);
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 1, 0, 0, 0);
                LJUD.GoOne(ue9.ljhandle);


                //First enable the quadrature input.

                //Enable 2 timers for phases A and B.  They will use FIO0 and FIO1.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 2, 0, 0);

                //Configure Timer0 as quadrature.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_TIMER_MODE, 0, (double)LJUD.TIMERMODE.QUAD, 0, 0);

                //Configure Timer1 as quadrature.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_TIMER_MODE, 1, (double)LJUD.TIMERMODE.QUAD, 0, 0);

                //Execute the requests on a single LabJack.  The driver will use a
                //single low-level TimerCounter command to handle all the requests above.
                LJUD.GoOne(ue9.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Get all the results just to check for errors.
            try { LJUD.GetFirstResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
            catch (LabJackUDException e) { showErrorMessage(e); }
            bool isFinished = false;

            while (!isFinished)
            {
                try
                {
                    LJUD.GetNextResult(ue9.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }


            try
            {
                while (Win32Interop._kbhit() == 0)                      //Program will run until any key is hit
                {
                    //Wait 500 milliseconds
                    Thread.Sleep(500);

                    //Request a read from Timer0.  Timer0 and Timer1 both return the same
                    //quadrature value.
                    LJUD.eGet(ue9.ljhandle, LJUD.IO.GET_TIMER, 0, ref dblValue, 0);
                    Console.Out.WriteLine("Quad Counter = {0:0.0}\n", dblValue);
                }


                //Disable the timers and the FIO lines will return to digital I/O.
                LJUD.AddRequest(ue9.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 0, 0, 0);
                LJUD.GoOne(ue9.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            Console.ReadLine();             // Pause for user
        }
Пример #11
0
        /// <summary>
        /// Actually performs actions on the U6 and updates the displaye
        /// </summary>
        /// <param name="sender">The object that executed this method</param>
        /// <param name="e">Event parameters</param>
        private void goButton_Click(object sender, System.EventArgs e)
        {
            double dblDriverVersion;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0;
            double       Value2 = 0, Value3 = 0;
            double       ValueDIBit = 0, ValueDIPort = 0, ValueCounter = 0;

            // dummy variables to satisfy certian method signatures
            double dummyDouble = 0;
            int    dummyInt    = 0;

            //Read and display the UD version.
            dblDriverVersion    = LJUD.GetDriverVersion();
            versionDisplay.Text = String.Format("{0:0.000}", dblDriverVersion);

            // Open U6
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            try
            {
                //First some configuration commands.  These will be done with the ePut
                //function which combines the add/go/get into a single call.

                //Configure the resolution of the analog inputs (pass a non-zero value for quick sampling).
                //See section 2.6 / 3.1 for more information.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.AIN_RESOLUTION, 0, 0);

                //Configure the analog input range on channels 2 and 3 for bipolar 10v.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 2, (double)LJUD.RANGES.BIP10V, 0);

                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_AIN_RANGE, (LJUD.CHANNEL) 3, (double)LJUD.RANGES.BIP10V, 0);

                //Enable Counter0 which will appear on FIO0 (assuming no other
                //program has enabled any timers or Counter1).
                LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 1, 0);

                //Now we add requests to write and read I/O.  These requests
                //will be processed repeatedly by go/get statements in every
                //iteration of the while loop below.

                //Request AIN2 and AIN3.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 2, 0, 0, 0);
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 3, 0, 0, 0);

                //Set DAC0 to 2.5 volts.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_DAC, 0, 2.5, 0, 0);

                //Read digital input FIO1.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 1, 0, 0, 0);

                //Read digital inputs FIO2 through FIO3.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 2, 0, 2, 0);
                // LJUD.AddRequest (u6.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 2, 0, 3, 0); would request through FIO4

                //Request the value of Counter0.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_COUNTER, 0, 0, 0, 0);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            try
            {
                //Execute the requests.
                LJUD.GoOne(u6.ljhandle);

                //Get all the results.  The input measurement results are stored.  All other
                //results are for configuration or output requests so we are just checking
                //whether there was an error.
                LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
            }
            catch (LabJackUDException exc)
            {
                ShowErrorMessage(exc);
                return;
            }

            bool isFinished = false;

            while (!isFinished)
            {
                switch (ioType)
                {
                case LJUD.IO.GET_AIN:
                    switch ((int)channel)
                    {
                    case 2:
                        Value2 = dblValue;
                        break;

                    case 3:
                        Value3 = dblValue;
                        break;
                    }
                    break;

                case LJUD.IO.GET_DIGITAL_BIT:
                    ValueDIBit = dblValue;
                    break;

                case LJUD.IO.GET_DIGITAL_PORT:
                    ValueDIPort = dblValue;
                    break;

                case LJUD.IO.GET_COUNTER:
                    ValueCounter = dblValue;
                    break;
                }
                try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException exc)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (exc.LJUDError == U6.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        isFinished = true;
                    }
                    else
                    {
                        ShowErrorMessage(exc);
                    }
                }
            }

            // Display results
            ain2Display.Text     = String.Format("{0:0.###}", Value2);
            ain3Display.Text     = String.Format("{0:0.###}", Value3);
            fio1Display.Text     = String.Format("{0:0.###}", ValueDIBit);
            fio2Display.Text     = String.Format("{0:0.###}", ValueDIPort);         //Will read 30 (binary 11) if both lines are pulled-high as normal.
            counter0Display.Text = String.Format("{0:0.###}", ValueCounter);
        }
Пример #12
0
        public void performActions()
        {
            LJUD.IO      ioType   = 0;
            LJUD.CHANNEL channel  = 0;
            double       dblValue = 0;

            // Variables to satisfy certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;

            double[] dummyDoubleArray = { 0 };

            //Open the Labjack with id 2
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "1", true);                 // Connection through USB

                //First requests to configure the timer and counter.  These will be
                //done with and add/go/get block.

                //Set the timer/counter pin offset to 0, which will put the first
                //timer/counter on FIO0.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_COUNTER_PIN_OFFSET, 0, 0, 0);

                //Use the 48 MHz timer clock base with divider.  Since we are using clock with divisor
                //support, Counter0 is not available.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_CLOCK_BASE, (double)LJUD.TIMERCLOCKS.MHZ48_DIV, 0, 0);

                //Set the divisor to 48 so the actual timer clock is 1 MHz.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_CLOCK_DIVISOR, 48, 0, 0);

                //Enable 1 timer.  It will use FIO0.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.NUMBER_TIMERS_ENABLED, 1, 0, 0);

                //Make sure Counter0 is disabled.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 0, 0, 0, 0);

                //Enable Counter1.  It will use FIO1 since 1 timer is enabled.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, 1, 1, 0, 0);

                //Configure Timer0 as 8-bit PWM.  Frequency will be 1M/256 = 3906 Hz.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_MODE, 0, (double)LJUD.TIMERMODE.PWM8, 0, 0);

                //Set the PWM duty cycle to 50%.
                LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_TIMER_VALUE, 0, 32768, 0, 0);

                //Execute the requests.
                LJUD.GoOne(u6.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Get all the results just to check for errors.
            try { LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
            catch (LabJackUDException e) { showErrorMessage(e); }
            bool finished = false;

            while (!finished)
            {
                try{ LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)
                {
                    if (e.LJUDError == LJUD.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        finished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            try
            {
                //Wait 1 second.
                Thread.Sleep(1000);

                //Request a read from the counter.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_COUNTER, (LJUD.CHANNEL) 1, ref dblValue, dummyDoubleArray);

                //This should read roughly 4k counts if FIO0 is shorted to FIO1.
                Console.Out.WriteLine("Counter = {0:0.0}\n", dblValue);

                //Wait 1 second.
                Thread.Sleep(1000);

                //Request a read from the counter.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_COUNTER, (LJUD.CHANNEL) 1, ref dblValue, dummyDoubleArray);

                //This should read about 3906 counts more than the previous read.
                Console.Out.WriteLine("Counter = {0:0.0}\n", dblValue);

                //Reset all pin assignments to factory default condition.
                LJUD.ePut(u6.ljhandle, LJUD.IO.PIN_CONFIGURATION_RESET, 0, 0, 0);

                //The PWM output sets FIO0 to output, so we do a read here to set
                //it to input.
                LJUD.eGet(u6.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 0, ref dblValue, 0);
            }
            catch (LabJackUDException e)
            {
                if (e.LJUDError == LJUD.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                {
                    finished = true;
                }
                else
                {
                    showErrorMessage(e);
                }
            }

            Console.ReadLine();             // Pause for user
        }
Пример #13
0
        public void performActions()
        {
            double dblDriverVersion;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0;
            double       Value0 = 9999, Value1 = 9999, Value2 = 9999;
            double       ValueDIBit = 9999, ValueDIPort = 9999, ValueCounter = 9999;


            //Read and display the UD version.
            dblDriverVersion = LJUD.GetDriverVersion();
            Console.Out.WriteLine("UD Driver Version = {0:0.000}\n\n", dblDriverVersion);


            //Open the first found LabJack U6.
            try
            {
                u6 = new U6(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }


            //First some configuration commands.  These will be done with the ePut
            //function which combines the add/go/get into a single call.

            //Set the timer/counter pin offset to 3, which will put the first
            //timer/counter on FIO3.
            LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.TIMER_COUNTER_PIN_OFFSET, 3, 0);

            //Enable Counter1 (FIO3).
            LJUD.ePut(u6.ljhandle, LJUD.IO.PUT_COUNTER_ENABLE, (LJUD.CHANNEL) 1, 1, 0);


            //The following commands will use the add-go-get method to group
            //multiple requests into a single low-level function.

            //Request a single-ended reading from AIN0.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 0, 0, 0, 0);

            //Request a single-ended reading from AIN1.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN, 1, 0, 0, 0);

            //Request a reading from AIN2 using the Special range.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_AIN_DIFF, 2, 0, 15, 0);

            //Set DAC0 to 3.5 volts.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_DAC, 0, 3.5, 0, 0);

            //Set digital output FIO0 to output-high.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.PUT_DIGITAL_BIT, 0, 1, 0, 0);

            //Read digital input FIO1.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_BIT, 1, 0, 0, 0);

            //Read digital inputs FIO1 through FIO2.
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_DIGITAL_PORT, 1, 0, 2, 0);

            //Request the value of Counter1 (FIO3).
            LJUD.AddRequest(u6.ljhandle, LJUD.IO.GET_COUNTER, 1, 0, 0, 0);


            bool requestedExit = false;

            while (!requestedExit)
            {
                try
                {
                    //Execute the requests.
                    LJUD.GoOne(u6.ljhandle);

                    //Get all the results.  The input measurement results are stored.  All other
                    //results are for configuration or output requests so we are just checking
                    //whether there was an error.
                    LJUD.GetFirstResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble);
                }
                catch (LabJackUDException e)
                {
                    showErrorMessage(e);
                }

                bool finished = false;
                while (!finished)
                {
                    switch (ioType)
                    {
                    case LJUD.IO.GET_AIN:
                        switch ((int)channel)
                        {
                        case 0:
                            Value0 = dblValue;
                            break;

                        case 1:
                            Value1 = dblValue;
                            break;
                        }
                        break;

                    case LJUD.IO.GET_AIN_DIFF:
                        Value2 = dblValue;
                        break;

                    case LJUD.IO.GET_DIGITAL_BIT:
                        ValueDIBit = dblValue;
                        break;

                    case LJUD.IO.GET_DIGITAL_PORT:
                        ValueDIPort = dblValue;
                        break;

                    case LJUD.IO.GET_COUNTER:
                        ValueCounter = dblValue;
                        break;
                    }
                    try { LJUD.GetNextResult(u6.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                    catch (LabJackUDException e)
                    {
                        // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                        if (e.LJUDError == U6.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                        {
                            finished = true;
                        }
                        else
                        {
                            showErrorMessage(e);
                        }
                    }
                }

                Console.Out.WriteLine("AIN0 = {0:0.###}\n", Value0);
                Console.Out.WriteLine("AIN1 = {0:0.###}\n", Value1);
                Console.Out.WriteLine("AIN2 = {0:0.###}\n", Value2);
                Console.Out.WriteLine("FIO1 = {0:0.###}\n", ValueDIBit);
                Console.Out.WriteLine("FIO1-FIO2 = {0:0.###}\n", ValueDIPort);                 //Will read 3 (binary 11) if both lines are pulled-high as normal.
                Console.Out.WriteLine("Counter1 (FIO3) = {0:0.###}\n", ValueCounter);

                Console.Out.WriteLine("\nPress Enter to go again or (q) to quit\n");
                str1          = Console.ReadLine();        // Pause for user
                requestedExit = str1 == "q";
            }
        }
Пример #14
0
        public void performActions()
        {
            long i = 0, k = 0;

            LJUD.IO      ioType = 0;
            LJUD.CHANNEL channel = 0;
            double       dblValue = 0, dblCommBacklog = 0, dblUDBacklog = 0;
            double       scanRate = 2000;
            int          delayms  = 1000;
            double       numScans = 4000;        //2x the expected # of scans (2*scanRate*delayms/1000)
            double       numScansRequested;

            double[] adblData     = new double[8000];          //Max buffer size (#channels*numScansRequested)

            // Variables to satisfy certain method signatures
            int    dummyInt    = 0;
            double dummyDouble = 0;

            double[] dummyDoubleArray = { 0 };

            //Read and display the UD version.
            dblValue = LJUD.GetDriverVersion();
            Console.Out.WriteLine("UD Driver Version = {0:0.000}\n\n", dblValue);

            try
            {
                //Open the first found LabJack U3.
                u3 = new U3(LJUD.CONNECTION.USB, "0", true);                 // Connection through USB

                //Read and display the hardware version of this U3.
                LJUD.eGet(u3.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.HARDWARE_VERSION, ref dblValue, 0);
                Console.Out.WriteLine("U3 Hardware Version = {0:0.000}\n\n", dblValue);

                //Read and display the firmware version of this U3.
                LJUD.eGet(u3.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.FIRMWARE_VERSION, ref dblValue, 0);
                Console.Out.WriteLine("U3 Firmware Version = {0:0.000}\n\n", dblValue);

                //Start by using the pin_configuration_reset IOType so that all
                //pin assignments are in the factory default condition.
                LJUD.ePut(u3.ljhandle, LJUD.IO.PIN_CONFIGURATION_RESET, 0, 0, 0);

                //Configure FIO0 and FIO1 as analog, all else as digital.  That means we
                //will start from channel 0 and update all 16 flexible bits.  We will
                //pass a value of b0000000000000011 or d3.
                LJUD.ePut(u3.ljhandle, LJUD.IO.PUT_ANALOG_ENABLE_PORT, 0, 3, 16);


                //Configure the stream:
                //Set the scan rate.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_SCAN_FREQUENCY, scanRate, 0, 0);

                //Give the driver a 5 second buffer (scanRate * 2 channels * 5 seconds).
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_BUFFER_SIZE, scanRate * 2 * 5, 0, 0);

                //Configure reads to retrieve whatever data is available without waiting (wait mode LJUD.STREAMWAITMODES.NONE).
                //See comments below to change this program to use LJUD.STREAMWAITMODES.SLEEP mode.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.PUT_CONFIG, LJUD.CHANNEL.STREAM_WAIT_MODE, (double)LJUD.STREAMWAITMODES.NONE, 0, 0);

                //Define the scan list as AIN0 then AIN1.
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.CLEAR_STREAM_CHANNELS, 0, 0, 0, 0);
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL, 0, 0, 0, 0);
                LJUD.AddRequest(u3.ljhandle, LJUD.IO.ADD_STREAM_CHANNEL_DIFF, 1, 0, 32, 0);

                //Execute the list of requests.
                LJUD.GoOne(u3.ljhandle);
            }
            catch (LabJackUDException e)
            {
                showErrorMessage(e);
            }

            //Get all the results just to check for errors.
            try { LJUD.GetFirstResult(u3.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
            catch (LabJackUDException e) { showErrorMessage(e); }
            bool finished = false;

            while (!finished)
            {
                try { LJUD.GetNextResult(u3.ljhandle, ref ioType, ref channel, ref dblValue, ref dummyInt, ref dummyDouble); }
                catch (LabJackUDException e)
                {
                    // If we get an error, report it.  If the error is NO_MORE_DATA_AVAILABLE we are done
                    if (e.LJUDError == UE9.LJUDERROR.NO_MORE_DATA_AVAILABLE)
                    {
                        finished = true;
                    }
                    else
                    {
                        showErrorMessage(e);
                    }
                }
            }

            //Start the stream.
            try
            {
                LJUD.eGet(u3.ljhandle, LJUD.IO.START_STREAM, 0, ref dblValue, 0);
            }
            catch (LabJackUDException e) { showErrorMessage(e); }

            //The actual scan rate is dependent on how the desired scan rate divides into
            //the LabJack clock.  The actual scan rate is returned in the value parameter
            //from the start stream command.
            Console.Out.WriteLine("Actual Scan Rate = {0:0.000}\n", dblValue);
            Console.Out.WriteLine("Actual Sample Rate = {0:0.000}\n", 2 * dblValue);          // # channels * scan rate


            //Read data
            while (Win32Interop._kbhit() == 0)                  //Loop will run until any key is hit
            {
                //Since we are using wait mode LJUD.STREAMWAITMODES.NONE, we will wait a little, then
                //read however much data is available.  Thus this delay will control how
                //fast the program loops and how much data is read each loop.  An
                //alternative common method is to use wait mode LJUD.STREAMWAITMODES.SLEEP where the
                //stream read waits for a certain number of scans.  In such a case
                //you would not have a delay here, since the stream read will actually
                //control how fast the program loops.
                //
                //To change this program to use sleep mode,
                //	-change numScans to the actual number of scans desired per read,
                //	-change wait mode addrequest value to LJUD.STREAMWAITMODES.SLEEP,
                //	-comment out the following Thread.Sleep command.

                Thread.Sleep(delayms);                  //Remove if using LJUD.STREAMWAITMODES.SLEEP.

                //init array so we can easily tell if it has changed
                for (k = 0; k < numScans * 2; k++)
                {
                    adblData[k] = 9999.0;
                }

                try
                {
                    //Read the data.  We will request twice the number we expect, to
                    //make sure we get everything that is available.
                    //Note that the array we pass must be sized to hold enough SAMPLES, and
                    //the Value we pass specifies the number of SCANS to read.
                    numScansRequested = numScans;
                    LJUD.eGet(u3.ljhandle, LJUD.IO.GET_STREAM_DATA, LJUD.CHANNEL.ALL_CHANNELS, ref numScansRequested, adblData);

                    //The displays the number of scans that were actually read.
                    Console.Out.WriteLine("\nIteration # {0:0.#}\n", i);
                    Console.Out.WriteLine("Number read = {0:0}\n", numScansRequested);

                    //This displays just the first scan.
                    Console.Out.WriteLine("First scan = {0:0.000}, {1:0.000}\n", adblData[0], adblData[1]);

                    //Retrieve the current backlog.  The UD driver retrieves stream data from
                    //the U3 in the background, but if the computer is too slow for some reason
                    //the driver might not be able to read the data as fast as the U3 is
                    //acquiring it, and thus there will be data left over in the U3 buffer.
                    LJUD.eGet(u3.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.STREAM_BACKLOG_COMM, ref dblCommBacklog, 0);
                    Console.Out.WriteLine("Comm Backlog = {0:0}\n", dblCommBacklog);
                    LJUD.eGet(u3.ljhandle, LJUD.IO.GET_CONFIG, LJUD.CHANNEL.STREAM_BACKLOG_UD, ref dblUDBacklog, 0);
                    Console.Out.WriteLine("UD Backlog = {0:0}\n", dblUDBacklog);
                    i++;
                }
                catch (LabJackUDException e) { showErrorMessage(e); }
            }


            //Stop the stream
            try{ LJUD.eGet(u3.ljhandle, LJUD.IO.STOP_STREAM, 0, ref dummyDouble, dummyDoubleArray); }
            catch (LabJackUDException e) { showErrorMessage(e); }

            Console.Out.WriteLine("\nDone");
            Console.ReadLine();             // Pause for user
        }