Пример #1
0
        public void GPIndividualWriteAndRead()
        {
            // First we'll set up a Fitness for the Individual
            var rand = new MersenneTwisterFast(0);

            // Initialize some required context
            var state       = new SimpleEvolutionState();
            var initializer = new GPInitializer();

            state.Initializer = initializer; // Required for GPTree.WriteTree(...)
            var constraints = new GPTreeConstraints {
                Name = "TestTreeConstraints"
            };
            //initializer.TreeConstraints
            var tree = new GPTree();

            var f = new KozaFitness();

            f.SetStandardizedFitness(null, float.MaxValue);

            const int n = 10;

            f.Trials = new List <double>(n);
            for (var i = 0; i < n; i++)
            {
                f.Trials.Add(rand.NextDouble());
            }

            // Now we can create and initialize the Individual
            var ind  = new GPIndividual();
            var ind2 = new GPIndividual(); // We'll read back into this instance

            ind.Trees = new GPTree[1];     // This is the set of genes

            ind.Trees[0] = new GPTree();

            ind.Fitness   = f;
            ind.Evaluated = true;

            using (var ms = new MemoryStream())
            {
                var writer = new BinaryWriter(ms);
                ind.WriteIndividual(null, writer);

                ms.Position = 0;
                var reader = new BinaryReader(ms);

                ind2.Fitness = new SimpleFitness();
                ind2.ReadIndividual(null, reader);

                Assert.IsTrue(ind.Fitness.EquivalentTo(ind2.Fitness));
                Assert.IsTrue(ind2.Fitness.IsIdeal);
                Assert.IsTrue(ind.Equals(ind2)); // Genetically equivalent

                Assert.AreEqual(ind.Trees.Length, ind2.Trees.Length);
            }
        }
Пример #2
0
        public void KozaFitnessWriteAndRead()
        {
            var rand = new MersenneTwisterFast(0);
            var f    = new KozaFitness();

            // Standardized fitness ranges from 0.0f inclusive to PositiveInfinity exclusive where 0.0f is ideal
            // Adjusted fitness ranges from 0.0f inclusive to 1.0f exclusive, where higher is better
            f.SetStandardizedFitness(null, float.MaxValue);

            // Set up some random Trials just to check that they get transmitted
            const int n = 10;

            f.Trials = new List <double>(n);
            for (var i = 0; i < n; i++)
            {
                f.Trials.Add(rand.NextDouble() * double.MaxValue); // in the half-open interval [0.0, double.MaxValue)
            }

            using (var ms = new MemoryStream())
            {
                var writer = new BinaryWriter(ms);
                f.WriteFitness(null, writer); // Write
                ms.Position = 0;
                var reader = new BinaryReader(ms);
                var f2     = new KozaFitness();
                f2.ReadFitness(null, reader); // Read

                // Compare
                Assert.AreEqual(f.Value, f2.Value); // Value is same
                // KozaFitness defines 'Value' as AdjustedFitness [0.0, 1.0), i.e. zero is valid but one is not
                Assert.IsTrue(f.Value < 1.0f && f2.Value < 1.0f);
                Assert.IsFalse(f2.IsIdeal);                       // Fitness is ideal
                Assert.AreEqual(f2.Trials.Count, f.Trials.Count); // Number of trials is the same
                for (var i = 0; i < f.Trials.Count; i++)
                {
                    Assert.AreEqual((double)f.Trials[i], (double)f2.Trials[i]); // Trial values are all the same
                }
            }
        }