Пример #1
0
        /// <summary>
        /// Create an ABCD explorer along these two axes
        /// </summary>
        /// <param name="v1"></param>
        /// <param name="v2"></param>
        public ABCDCutExplorer(IPlotSpec <T> v1, IPlotSpec <T> v2)
        {
            _v1 = v1;
            _v2 = v2;

            _2DPlot = _v1.CombinePlotAxes(_v2);
        }
Пример #2
0
        /// <summary>
        /// Initialize everything we can do before.
        /// </summary>
        static EventTypePlotters()
        {
            // Sum logR
            JetEventTypeSumCalRPlot = JetRawSumCalRPlot
                                      .FromType <double, EventType>(info => NormalizeCalRatio.Invoke(info.Item1.Jet.logRatio) + NormalizeCalRatio.Invoke(info.Item2.Jet.logRatio));

            // Sum Track pT of the two
            JetEventTypeSum2JTrackPt = JetRawSum2JTrackPt
                                       .FromType <double, EventType>(info => info.Item1.AllTracks.Select(t => t.pT).Sum() + info.Item2.AllTracks.Select(t => t.pT).Sum());

            // Sum of the DR's for both trakcs.
            JetEventDRToTrackSum = JetRawDRToTrackSum
                                   .FromType <double, EventType>(info => CalcDR2GeVTrack.Invoke(info.Item1.AllTracks, info.Item1.Jet) + CalcDR2GeVTrack.Invoke(info.Item2.AllTracks, info.Item2.Jet));
        }
        /// <summary>
        /// Get the dependencies right
        /// </summary>
        static PlotSpecifications()
        {
            JetPtPlot = JetPtPlotRaw.FromType<double, recoTreeJets>(j => j.pT);
            JetETPlot = JetEtaPlotRaw.FromType<double, recoTreeJets>(j => j.ET);
            JetWidthPlot = JetWidthPlotRaw.FromType<double, recoTreeJets>(j => j.width);
            JetEtaPlot = JetEtaPlotRaw.FromType<double, recoTreeJets>(j => j.eta);
            JetLxyPlot = JetLxyPlotRaw.FromType<double, recoTreeJets>(j => j.LLP.IsGoodIndex() ? j.LLP.Lxy / 1000.0 : 0.0);
            JetCalRPlot = JetCalRPlotRaw.FromType<double, recoTreeJets>(j => j.logRatio);
            JetCalRPlotFine = JetCalRPlotFineRaw.FromType<double, recoTreeJets>(j => j.logRatio);

            NTrackPlot = NTrackPlotRaw.FromType<double, IEnumerable<recoTreeTracks>>(tks => tks.Count());

            LLPPtPlot = LLPPtPlotRaw.FromType<double, recoTreeLLPs>(j => j.pT / 1000.0);

            JetPtPlotJetStream = JetPtPlot.FromType<recoTreeJets, JetStream>(j => j.JetInfo.Jet, weight: j => j.Weight);
            JetETPlotJetStream = JetETPlot.FromType<recoTreeJets, JetStream>(j => j.JetInfo.Jet, weight: j => j.Weight);
            JetEtaPlotJetStream = JetEtaPlot.FromType<recoTreeJets, JetStream>(j => j.JetInfo.Jet, weight: j=> j.Weight);
            JetLxyPlotJetStream = JetLxyPlot.FromType<recoTreeJets, JetStream>(j => j.JetInfo.Jet, weight: j => j.Weight);
            JetCalRPlotJetStream = JetCalRPlot.FromType<recoTreeJets, JetStream>(j => j.JetInfo.Jet, weight: j => j.Weight);
            JetCalRPlotFineJetStream = JetCalRPlotFine.FromType<recoTreeJets, JetStream>(j => j.JetInfo.Jet, weight: j => j.Weight);
            JetStreamSumPt = JetExtraSumPt.FromType<JetInfoExtra, JetStream>(j => j.JetInfo, weight: j => j.Weight);
            JetStreamMaxPt = JetExtraMaxPt.FromType<JetInfoExtra, JetStream>(j => j.JetInfo, weight: j => j.Weight);

            SumTrackPtPlot = SumTrackPtPlotRaw.FromType<double, JetInfoExtra>(j => j.AllTracks.Sum(t => t.pT));
            MaxTrackPtPlot = MaxTrackPtPlotRaw.FromType<double, JetInfoExtra>(j => CalcMaxPt.Invoke(j.AllTracks));
            DeltaROfCloseTrackPlotExtra = DeltaROfCloseTrackPlotRaw.FromType<double, JetInfoExtra>(j => CalcDR2GeVTrack.Invoke(j.AllTracks, j.Jet));
            JetExtraPtPlot = JetPtPlot.FromType<recoTreeJets, JetInfoExtra>(jinfo => jinfo.Jet);
            JetWidthPlotExtra = JetWidthPlot.FromType<recoTreeJets, JetInfoExtra>(jinfo => jinfo.Jet);
            JetExtraEtaPlot = JetEtaPlot.FromType<recoTreeJets, JetInfoExtra>(jinfo => jinfo.Jet);
            JetExtraCalRPlot = JetCalRPlot.FromType<recoTreeJets, JetInfoExtra>(jinfo => jinfo.Jet);
            NTrackExtraPlot = NTrackPlot.FromType<IEnumerable<recoTreeTracks>, JetInfoExtra>(jinfo => jinfo.Tracks);
            TrackPtExtraPlot = TrackPtPlot.FromManyOfType((JetInfoExtra j) => j.Tracks);
            JetExtraCalRVsPtPlot = JetCalRVsPtPlot.FromType<recoTreeJets, JetInfoExtra>(jinfo => jinfo.Jet);

            PileUpWeight = PileUpWeightRaw.FromType<double, recoTree>(evt => evt.pileupEventWeight);
        }
Пример #4
0
        /// <summary>
        /// Calculate a set of plots over this list of events
        /// </summary>
        /// <param name="signal"></param>
        /// <param name="background"></param>
        /// <param name="jetSelectorFunc"></param>
        /// <param name="dir"></param>
        private static Tuple<IFutureValue<NTH1>, IFutureValue<NTH1>> CalcSignalToBackground(IQueryable<JetInfoExtra> signal, IQueryable<JetInfoExtra> background,
            IPlotSpec<JetInfoExtra> plotter,
            FutureTDirectory dir,
            string name)
        {
            GC.Collect(3, GCCollectionMode.Forced, true);
            // Some generic plots
            signal
                .FuturePlot(JetExtraPtPlot, $"{name}_sig")
                .Save(dir);
            background
                .FuturePlot(JetExtraPtPlot, $"{name}_back")
                .Save(dir);

            signal
                .FuturePlot(JetExtraEtaPlot, $"{name}_sig")
                .Save(dir);
            background
                .FuturePlot(JetExtraEtaPlot, $"{name}_back")
                .Save(dir);

            // get the histograms for the signal and background
            var sPlot = signal
                .FuturePlot(plotter, "eff_sig")
                .Rename($"{name}_sig")
                .Save(dir)
                .Normalize()
                .AsCumulative(startWithZeroEff: false)
                .Rename($"{name}_sigrtback_sig")
                .Save(dir);
            var bPlot = background
                .FuturePlot(plotter, "eff_back")
                .Rename($"{name}_back")
                .Save(dir)
                .Normalize()
                .AsCumulative()
                .Rename($"{name}_sigrtback_back")
                .Save(dir);

            var bPlotSqrt = bPlot
                .Sqrt();

            // As a bonus, calc the effeciency graf. Get the x and y for that.
            // TODO: there doesn't seem to be a get accessor for Content on NTH1 - is that really right?
            //var r = from s in sPlot
            //        let sContent = Enumerable.Range(1, s.NbinsX).Select(idx => s.GetBinContent(idx)).ToArray()
            //        from b in bPlot
            //        select new ROOTNET.NTGraph(s.NBinsX, sContent, sContent);
            var effCurve = from s in sPlot
                           from b in bPlot
                           select CalculateROC(s, b, $"{name}_roc",$"ROC for {name}");
            effCurve
                .Save(dir);

            // Calc the S/sqrt(B) and return it.
            sPlot
                .DividedBy(bPlotSqrt)
                .Rename($"{name}_sigrtback")
                .Save(dir);

            return Tuple.Create(sPlot, bPlot);
        }
Пример #5
0
 /// <summary>
 /// Generate a series of plots
 /// </summary>
 /// <param name="signal"></param>
 /// <param name="background"></param>
 /// <param name="plotter"></param>
 /// <param name="dir"></param>
 /// <param name="nameStub"></param>
 private static Tuple<IFutureValue<NTH1>, IFutureValue<NTH1>> CalcSignalToBackgroundSeries(IQueryable<JetInfoExtra> signal, IQueryable<JetInfoExtra> background,
     IPlotSpec<JetInfoExtra> plotter,
     FutureTDirectory dir, string nameStub)
 {
     // Do them all.
     CalcSignalToBackground(signal, background, plotter, dir, nameStub);
     // Do LLP that have LLPs
     // TODO: understand how the LLP association is made, and make sure it is good enough.
     CalcSignalToBackground(signal.Where(sj => sj.Jet.LLP.IsGoodIndex()), background, plotter, dir, $"{nameStub}LLPJ");
     // Has an LLP in the calorimeter.
     // TODO: understand how the LLP association is made, and make sure it is good enough.
     // TODO: Understand what isCRJet is defined to be.
     return CalcSignalToBackground(signal.Where(sj => sj.Jet.LLP.IsGoodIndex() && Constants.InCalorimeter.Invoke(sj.Jet.LLP.Lxy/1000)), background, plotter, dir, $"{nameStub}LLPJCal");
 }
Пример #6
0
        /// <summary>
        /// Try to uncorrelate the variables
        /// </summary>
        /// <param name="coVar"></param>
        /// <param name="jetEventTypeSumCalRPlot"></param>
        /// <param name="jetEventTypeSum2JTrackPt"></param>
        /// <returns></returns>
        private static Tuple <IPlotSpec <EventType>, IPlotSpec <EventType> > UncorrelateVariables(Matrix <double> coVar, IPlotSpec <EventType> v1, IPlotSpec <EventType> v2)
        {
            // Calculate the coefficients, and then the expressions
            var c     = coVar.Cholesky();
            var coeff = c.Factor.Inverse();

            Expression <Func <EventType, double> > v1UCcalc = et => coeff[0, 0] * v1.ValueExpressionX.Invoke(et) + coeff[0, 1] * v2.ValueExpressionX.Invoke(et);
            Expression <Func <EventType, double> > v2UCcalc = et => coeff[1, 0] * v1.ValueExpressionX.Invoke(et) + coeff[1, 1] * v2.ValueExpressionX.Invoke(et);

            // Next, we have to build up new plotter guys!

            var plotter1 = MakePlotterSpec <EventType>(100, -10.0, 10.0, v1UCcalc, "UnCor1{0}", "Uncorrelated Variable 1");
            var plotter2 = MakePlotterSpec <EventType>(100, -10.0, 10.0, v2UCcalc, "UnCor2{0}", "Uncorrelated Variable 2");

            return(Tuple.Create(plotter1, plotter2));
        }
Пример #7
0
        /// <summary>
        /// Generate plots for the signal
        /// </summary>
        /// <param name="queryable"></param>
        /// <param name="sampleD"></param>
        /// <param name="mvaValue"></param>
        private static void PlotMVAResult(IQueryable<JetStream> source, FutureTDirectory dir, Expression<Func<TrainingTree, double>> mvaValue)
        {
            // Plot the weights. This can be used to plot signal vs background, ROC curves, etc.
            var weights = source
                .Select(j => TrainingUtils.TrainingTreeConverter.Invoke(j))
                .Select(j => Tuple.Create(mvaValue.Invoke(j), j.Weight))
                .FuturePlot(TrainingEventWeightFine.NameFormat, TrainingEventWeightFine.TitleFormat, TrainingEventWeightFine, "All")
                .Save(dir);

            // Next, let plot lots of kinematic plots so we can see what they look like.
            var plotsFromJS = new IPlotSpec<JetStream>[]
            {
                JetPtPlotJetStream,
                JetETPlotJetStream,
                JetEtaPlotJetStream,
                JetLxyPlotJetStream,
                JetCalRPlotJetStream,
                JetStreamSumPt,
                JetStreamMaxPt,
                JetCalRPlotFineJetStream,
            };

            var plots = plotsFromJS
                .Select(myp => myp.FromType<JetStream, Tuple<JetStream, double>>(jinfo => jinfo.Item1, weight: jinfo => jinfo.Item2 * jinfo.Item1.Weight));

            // We want weighted and unweighted plots here. We first have to normalize the weighting to be from 0 to 1.
            // If there is only a single weight in the sample (which is just weird) then correctly make sure we are set to deal
            // with things.
            var firstNonZeroBinValue = weights.Value.FindNonZeroBinValue();
            var lastNonZeroBinValue = weights.Value.FindNonZeroBinValue(HistogramUtils.BinSearchOrder.HighestBin);

            if (firstNonZeroBinValue == lastNonZeroBinValue)
            {
                Console.WriteLine($"  Sample has events with all one weight ({firstNonZeroBinValue}).");
            }

            var scaleing = lastNonZeroBinValue == firstNonZeroBinValue
                ? 1.0 
                : 1.0 / (lastNonZeroBinValue - firstNonZeroBinValue);

            firstNonZeroBinValue = lastNonZeroBinValue == firstNonZeroBinValue
                ? firstNonZeroBinValue - 1.0
                : firstNonZeroBinValue;

            var mvaWeithedJetStream = source
                .Select(j => Tuple.Create(j, j.Weight * (mvaValue.Invoke(TrainingUtils.TrainingTreeConverter.Invoke(j)) - firstNonZeroBinValue)*scaleing));
            var weithedJetStream = source
                .Select(j => Tuple.Create(j, j.Weight));

            // And run through each plot
            foreach (var p in plots)
            {
                mvaWeithedJetStream
                    .FuturePlot(p, "MVA")
                    .Save(dir);
                weithedJetStream
                    .FuturePlot(p, "")
                    .Save(dir);
            }
        }