public static void GenerateSerialCDExample(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var cellSize = 1.0 / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); Directory.CreateDirectory(outputFolder); var reconstruction = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var fastCD = new FastSerialCD(totalSize, psf); var lambda = 0.50f * fastCD.MaxLipschitz; var alpha = 0.2f; for (int cycle = 0; cycle < 100; cycle++) { var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize); Tools.WriteToMeltCSV(Common.PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CD_" + cycle + ".csv")); Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients_CD_" + cycle + ".csv")); fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 4); FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } }
public static float[,] Reconstruct(Intracommunicator comm, DistributedData.LocalDataset local, GriddingConstants c, int maxCycle, float lambda, float alpha, int iterPerCycle = 1000, bool usePathDeconvolution = false) { var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackward = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var metadata = Partitioner.CreatePartition(c, local.UVW, local.Frequencies); var patchSize = CalculateLocalImageSection(comm.Rank, comm.Size, c.GridSize, c.GridSize); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); //calculate psf and prepare for correlation in the Fourier space var psf = CalculatePSF(comm, c, metadata, local.UVW, local.Flags, local.Frequencies); Complex[,] PsfCorrelation = null; var maxSidelobe = PSF.CalcMaxSidelobe(psf); lambda = (float)(lambda * PSF.CalcMaxLipschitz(psf)); StreamWriter writer = null; if (comm.Rank == 0) { FitsIO.Write(psf, "psf.fits"); Console.WriteLine("done PSF gridding "); PsfCorrelation = PSF.CalcPaddedFourierCorrelation(psf, totalSize); writer = new StreamWriter(comm.Size + "runtimestats.txt"); } var deconvovler = new MPIGreedyCD(comm, totalSize, patchSize, psf); var residualVis = local.Visibilities; var xLocal = new float[patchSize.YEnd - patchSize.Y, patchSize.XEnd - patchSize.X]; for (int cycle = 0; cycle < maxCycle; cycle++) { if (comm.Rank == 0) { Console.WriteLine("cycle " + cycle); } var dirtyImage = ForwardCalculateB(comm, c, metadata, residualVis, local.UVW, local.Frequencies, PsfCorrelation, psf, maxSidelobe, watchForward); var bLocal = GetImgSection(dirtyImage.Image, patchSize); MPIGreedyCD.Statistics lastRun; if (usePathDeconvolution) { var currentLambda = Math.Max(1.0f / alpha * dirtyImage.MaxSidelobeLevel, lambda); lastRun = deconvovler.DeconvolvePath(xLocal, bLocal, currentLambda, 4.0f, alpha, 5, iterPerCycle, 2e-5f); } else { lastRun = deconvovler.Deconvolve(xLocal, bLocal, lambda, alpha, iterPerCycle, 1e-5f); } if (comm.Rank == 0) { WriteToFile(cycle, lastRun, writer); if (lastRun.Converged) { Console.WriteLine("-----------------------------CONVERGED!!!!------------------------"); } else { Console.WriteLine("-------------------------------not converged----------------------"); } } comm.Barrier(); if (comm.Rank == 0) { watchDeconv.Stop(); } float[][,] totalX = null; comm.Gather(xLocal, 0, ref totalX); Complex[,] modelGrid = null; if (comm.Rank == 0) { watchBackward.Start(); var x = new float[c.GridSize, c.GridSize]; StitchImage(totalX, x, comm.Size); FitsIO.Write(x, "xImage_" + cycle + ".fits"); FFT.Shift(x); modelGrid = FFT.Forward(x); } comm.Broadcast(ref modelGrid, 0); var modelVis = IDG.DeGrid(c, metadata, modelGrid, local.UVW, local.Frequencies); residualVis = Visibilities.Substract(local.Visibilities, modelVis, local.Flags); } writer.Close(); float[][,] gatherX = null; comm.Gather(xLocal, 0, ref gatherX); float[,] reconstructed = null; if (comm.Rank == 0) { reconstructed = new float[c.GridSize, c.GridSize];; StitchImage(gatherX, reconstructed, comm.Size); } return(reconstructed); }
public static void GeneratePSFs(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var c = MeasurementData.CreateSimulatedStandardParams(data.VisibilitiesCount); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); Directory.CreateDirectory(outputFolder); var maskedPsf = Copy(psf); Tools.Mask(maskedPsf, 2); var reverseMasked = Copy(psf); Tools.ReverseMask(reverseMasked, 2); var psf2 = PSF.CalcPSFSquared(psf); var psf2Cut = PSF.CalcPSFSquared(maskedPsf); Tools.WriteToMeltCSV(psf, Path.Combine(outputFolder, "psf.csv")); Tools.WriteToMeltCSV(maskedPsf, Path.Combine(outputFolder, "psfCut.csv")); Tools.WriteToMeltCSV(reverseMasked, Path.Combine(outputFolder, "psfReverseCut.csv")); Tools.WriteToMeltCSV(psf2, Path.Combine(outputFolder, "psfSquared.csv")); Tools.WriteToMeltCSV(psf2Cut, Path.Combine(outputFolder, "psfSquaredCut.csv")); var x = new float[c.GridSize, c.GridSize]; x[10, 10] = 1.0f; var convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, c.GridSize, c.GridSize))) using (var correlator = new PaddedConvolver(corrKernel, new Rectangle(0, 0, c.GridSize, c.GridSize))) { var zeroPadded = convolver.Convolve(x); var psf2Edge = correlator.Convolve(zeroPadded); Tools.WriteToMeltCSV(zeroPadded, Path.Combine(outputFolder, "psfZeroPadding.csv")); Tools.WriteToMeltCSV(psf2Edge, Path.Combine(outputFolder, "psfSquaredEdge.csv")); } convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, 0, 0)); using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, 0, 0))) Tools.WriteToMeltCSV(convolver.Convolve(x), Path.Combine(outputFolder, "psfCircular.csv")); //================================================= Reconstruct ============================================================= var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var reconstruction = new float[c.GridSize, c.GridSize]; var fastCD = new FastSerialCD(totalSize, psf); var lambda = 0.50f * fastCD.MaxLipschitz; var alpha = 0.2f; var residualVis = data.Visibilities; for (int cycle = 0; cycle < 5; cycle++) { Console.WriteLine("in cycle " + cycle); var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize); if (cycle == 0) { Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty.csv")); Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients.csv")); } fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 10000, 1e-5f); FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } //FitsIO.Write(reconstruction, Path.Combine(outputFolder,"xImage.fits")); Tools.WriteToMeltCSV(reconstruction, Path.Combine(outputFolder, "elasticNet.csv")); }
public static void GenerateCLEANExample(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var cellSize = 1.0 / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); Directory.CreateDirectory(outputFolder); var reconstruction = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; for (int cycle = 0; cycle < 10; cycle++) { Console.WriteLine("in cycle " + cycle); var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); //FitsIO.Write(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".fits")); Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".csv")); var maxY = -1; var maxX = -1; var max = 0.0f; for (int y = 0; y < dirtyImage.GetLength(0); y++) { for (int x = 0; x < dirtyImage.GetLength(1); x++) { if (max < Math.Abs(dirtyImage[y, x])) { maxY = y; maxX = x; max = Math.Abs(dirtyImage[y, x]); } } } //FitsIO.Write(reconstruction, Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".fits")); Tools.WriteToMeltCSV(PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".csv")); reconstruction[maxY, maxX] += 0.5f * dirtyImage[maxY, maxX]; FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } var cleanbeam = new float[c.GridSize, c.GridSize]; var x0 = c.GridSize / 2; var y0 = c.GridSize / 2; for (int y = 0; y < cleanbeam.GetLength(0); y++) { for (int x = 0; x < cleanbeam.GetLength(1); x++) { cleanbeam[y, x] = (float)(1.0 * Math.Exp(-(Math.Pow(x0 - x, 2) / 16 + Math.Pow(y0 - y, 2) / 16))); } } FitsIO.Write(cleanbeam, Path.Combine(outputFolder, "clbeam.fits")); FFT.Shift(cleanbeam); var CL = FFT.Forward(cleanbeam); var REC = FFT.Forward(reconstruction); var CONF = Common.Fourier2D.Multiply(REC, CL); var cleaned = FFT.BackwardFloat(CONF, reconstruction.Length); //FFT.Shift(cleaned); //FitsIO.Write(cleaned, Path.Combine(outputFolder, "rec_CLEAN.fits")); Tools.WriteToMeltCSV(PSF.Cut(cleaned), Path.Combine(outputFolder, "rec_CLEAN.csv")); }
public static void DebugILGPU() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var visibilitiesCount = visibilities.Length; int gridSize = 256; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = 1.0 / 3600.0 * PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.Backward(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var psfCutDouble = CutImg(psf); var psfCut = ToFloatImage(psfCutDouble); FitsIO.Write(psfCut, "psfCut.fits"); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var imageSection = new Rectangle(0, 128, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); fastCD.ResetLipschitzMap(ToFloatImage(psf)); var gpuCD = new GPUSerialCD(totalSize, psfCut, 100); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.8f; var xImage = new float[gridSize, gridSize]; var residualVis = visibilities; /*var truth = new double[gridSize, gridSize]; * truth[30, 30] = 1.0; * truth[35, 36] = 1.5; * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies); * visibilities = truthVis; * var residualVis = truthVis;*/ for (int cycle = 0; cycle < 4; cycle++) { //FORWARD watchForward.Start(); var dirtyGrid = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits"); watchForward.Stop(); //DECONVOLVE watchDeconv.Start(); bMapCalculator.ConvolveInPlace(dirtyImage); FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits"); //var result = fastCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f); var result = gpuCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f); if (result.Converged) { Console.WriteLine("-----------------------------CONVERGED!!!!------------------------"); } else { Console.WriteLine("-------------------------------not converged----------------------"); } FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits"); FitsIO.Write(dirtyImage, "residualDebug_" + cycle + ".fits"); watchDeconv.Stop(); //BACKWARDS watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); var hello = FFT.Forward(xImage, 1.0); hello = Common.Fourier2D.Multiply(hello, psfGrid); var hImg = FFT.Backward(hello, (double)(128 * 128)); //FFT.Shift(hImg); FitsIO.Write(hImg, "modelDirty_FFT.fits"); var imgRec = IDG.ToImage(c, metadata, modelVis, uvw, frequencies); FitsIO.Write(imgRec, "modelDirty" + cycle + ".fits"); } }
public static void DebugSimulatedApprox() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var visibilitiesCount = visibilities.Length; int gridSize = 256; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = 1.0 / 3600.0 * PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var psfCut = PSF.Cut(psf); FitsIO.Write(psfCut, "psfCut.fits"); var random = new Random(123); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); //fastCD.ResetAMap(psf); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.8f; var approx = new ApproxParallel(); var approx2 = new ApproxFast(totalSize, psfCut, 4, 8, 0f, 0.25f, false, true); var xImage = new float[gridSize, gridSize]; var residualVis = visibilities; /*var truth = new double[gridSize, gridSize]; * truth[30, 30] = 1.0; * truth[35, 36] = 1.5; * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies); * visibilities = truthVis; * var residualVis = truthVis;*/ var data = new ApproxFast.TestingData(new StreamWriter("approxConvergence.txt")); for (int cycle = 0; cycle < 4; cycle++) { //FORWARD watchForward.Start(); var dirtyGrid = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits"); watchForward.Stop(); //DECONVOLVE watchDeconv.Start(); //approx.ISTAStep(xImage, dirtyImage, psf, lambda, alpha); //FitsIO.Write(xImage, "xIsta.fits"); //FitsIO.Write(dirtyImage, "dirtyFista.fits"); //bMapCalculator.ConvolveInPlace(dirtyImage); //FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits"); //var result = fastCD.Deconvolve(xImage, dirtyImage, 0.5f * fastCD.MaxLipschitz, 0.8f, 1000, 1e-4f); //var converged = approx.DeconvolveActiveSet(xImage, dirtyImage, psfCut, lambda, alpha, random, 8, 1, 1); //var converged = approx.DeconvolveGreedy(xImage, dirtyImage, psfCut, lambda, alpha, random, 4, 4, 500); //var converged = approx.DeconvolveApprox(xImage, dirtyImage, psfCut, lambda, alpha, random, 1, threads, 500, 1e-4f, cycle == 0); approx2.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, psf, lambda, alpha, random, 10, 1e-4f); if (data.converged) { Console.WriteLine("-----------------------------CONVERGED!!!!------------------------"); } else { Console.WriteLine("-------------------------------not converged----------------------"); } FitsIO.Write(xImage, "xImageApprox_" + cycle + ".fits"); watchDeconv.Stop(); //BACKWARDS watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); } var dirtyGridCheck = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyCheck = FFT.Backward(dirtyGridCheck, c.VisibilitiesCount); FFT.Shift(dirtyCheck); var l2Penalty = Residuals.CalcPenalty(ToFloatImage(dirtyCheck)); var elasticPenalty = ElasticNet.CalcPenalty(xImage, (float)lambda, (float)alpha); var sum = l2Penalty + elasticPenalty; data.writer.Close(); }
public static void MeerKATFull() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw0.fits"); var flags = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length); double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); for (int i = 1; i < 8; i++) { var uvw0 = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw" + i + ".fits"); var flags0 = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length); var visibilities0 = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length, norm); uvw = FitsIO.Stitch(uvw, uvw0); flags = FitsIO.Stitch(flags, flags0); visibilities = FitsIO.Stitch(visibilities, visibilities0); } /* * var frequencies = FitsIO.ReadFrequencies(@"freq.fits"); * var uvw = FitsIO.ReadUVW("uvw0.fits"); * var flags = FitsIO.ReadFlags("flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length); * double norm = 2.0; * var visibilities = FitsIO.ReadVisibilities("vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); */ var visCount2 = 0; for (int i = 0; i < flags.GetLength(0); i++) { for (int j = 0; j < flags.GetLength(1); j++) { for (int k = 0; k < flags.GetLength(2); k++) { if (!flags[i, j, k]) { visCount2++; } } } } var visibilitiesCount = visCount2; int gridSize = 1024; int subgridsize = 16; int kernelSize = 4; //cell = image / grid int max_nr_timesteps = 512; double scaleArcSec = 2.5 / 3600.0 * PI / 180.0; var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)scaleArcSec, 1, 0.0f); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psf = IDG.CalculatePSF(c, metadata, uvw, flags, frequencies); FitsIO.Write(psf, "psf.fits"); var psfCut = CutImg(psf, 2); FitsIO.Write(psfCut, "psfCut.fits"); var maxSidelobe = CommonDeprecated.PSF.CalcMaxSidelobe(psf); var psfCorrelated = CommonDeprecated.PSF.CalculateFourierCorrelation(psfCut, c.GridSize, c.GridSize); var xImage = new double[gridSize, gridSize]; var residualVis = visibilities; var maxCycle = 2; for (int cycle = 0; cycle < maxCycle; cycle++) { watchForward.Start(); var dirtyImage = IDG.ToImage(c, metadata, residualVis, uvw, frequencies); watchForward.Stop(); FitsIO.Write(dirtyImage, "dirty" + cycle + ".fits"); watchDeconv.Start(); var sideLobe = maxSidelobe * GetMax(dirtyImage); Console.WriteLine("sideLobeLevel: " + sideLobe); var b = CommonDeprecated.Residuals.CalculateBMap(dirtyImage, psfCorrelated, psfCut.GetLength(0), psfCut.GetLength(1)); var lambda = 0.8; var alpha = 0.05; var currentLambda = Math.Max(1.0 / alpha * sideLobe, lambda); var converged = SerialCDReference.DeconvolvePath(xImage, b, psfCut, currentLambda, 4.0, alpha, 5, 1000, 2e-5); //var converged = GreedyCD2.Deconvolve(xImage, b, psfCut, currentLambda, alpha, 5000); if (converged) { Console.WriteLine("-----------------------------CONVERGED!!!! with lambda " + currentLambda + "------------------------"); } else { Console.WriteLine("-------------------------------not converged with lambda " + currentLambda + "----------------------"); } watchDeconv.Stop(); FitsIO.Write(xImage, "xImage_" + cycle + ".fits"); watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); } watchBackwards.Stop(); watchTotal.Stop(); var timetable = "total elapsed: " + watchTotal.Elapsed; timetable += "\n" + "idg forward elapsed: " + watchForward.Elapsed; timetable += "\n" + "idg backwards elapsed: " + watchBackwards.Elapsed; timetable += "\n" + "devonvolution: " + watchDeconv.Elapsed; File.WriteAllText("watches_single.txt", timetable); }
public static void DebugSimulatedMixed() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_mixed\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_mixed\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_mixed\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var visibilitiesCount = visibilities.Length; int gridSize = 1024; int subgridsize = 16; int kernelSize = 4; //cell = image / grid int max_nr_timesteps = 512; double scaleArcSec = 0.5 / 3600.0 * PI / 180.0; var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)scaleArcSec, 1, 0.0f); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psf = IDG.CalculatePSF(c, metadata, uvw, flags, frequencies); FitsIO.Write(psf, "psf.fits"); var psfCut = CutImg(psf, 2); FitsIO.Write(psfCut, "psfCut.fits"); var maxSidelobe = CommonDeprecated.PSF.CalcMaxSidelobe(psf); var xImage = new double[gridSize, gridSize]; var residualVis = visibilities; var maxCycle = 10; for (int cycle = 0; cycle < maxCycle; cycle++) { watchForward.Start(); var dirtyImage = IDG.ToImage(c, metadata, residualVis, uvw, frequencies); watchForward.Stop(); FitsIO.Write(dirtyImage, "dirty" + cycle + ".fits"); watchDeconv.Start(); var sideLobe = maxSidelobe * GetMax(dirtyImage); Console.WriteLine("sideLobeLevel: " + sideLobe); var PsfCorrelation = CommonDeprecated.PSF.CalculateFourierCorrelation(psfCut, c.GridSize, c.GridSize); var b = CommonDeprecated.Residuals.CalculateBMap(dirtyImage, PsfCorrelation, psfCut.GetLength(0), psfCut.GetLength(1)); var lambda = 100.0; var alpha = 0.95; var currentLambda = Math.Max(1.0 / alpha * sideLobe, lambda); var converged = SerialCDReference.DeconvolvePath(xImage, b, psfCut, currentLambda, 5.0, alpha, 5, 6000, 1e-3); //var converged = GreedyCD2.Deconvolve(xImage, b, psfCut, currentLambda, alpha, 5000); if (converged) { Console.WriteLine("-----------------------------CONVERGED!!!! with lambda " + currentLambda + "------------------------"); } else { Console.WriteLine("-------------------------------not converged with lambda " + currentLambda + "----------------------"); } watchDeconv.Stop(); FitsIO.Write(xImage, "xImage_" + cycle + ".fits"); watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); } watchBackwards.Stop(); watchTotal.Stop(); var timetable = "total elapsed: " + watchTotal.Elapsed; timetable += "\n" + "idg forward elapsed: " + watchForward.Elapsed; timetable += "\n" + "idg backwards elapsed: " + watchBackwards.Elapsed; timetable += "\n" + "devonvolution: " + watchDeconv.Elapsed; File.WriteAllText("watches_single.txt", timetable); }