/// <summary> /// Transformer encoder /// </summary> /// <param name="rawInputs"></param> /// <param name="g"></param> /// <returns></returns> /// public IWeightTensor Decode(IWeightTensor tgtInputs, IWeightTensor encOutputBatchFirst, IWeightTensor tgtSelfMask, IWeightTensor decEncAttnMask, IWeightTensor tgtDimMask, int batchSize, IComputeGraph g) { int tgtSeqLen = tgtInputs.Rows / batchSize; int srcSeqLen = encOutputBatchFirst.Rows / batchSize; using (IWeightTensor posEmbedding = g.BuildPositionMatrix(tgtSeqLen, m_inputDim)) { using (IWeightTensor posEmbeddingRepeat = g.RepeatRows(posEmbedding, batchSize, runGradient: false)) { tgtInputs = g.AddMul(posEmbeddingRepeat, tgtInputs, (float)Math.Sqrt(m_inputDim), runGradientW1: false, runGradientW2: true); } } tgtInputs = g.Dropout(tgtInputs, batchSize, m_dropoutRatio, inPlace: true); var tgtSelfMaskRep = g.View(tgtSelfMask, dims: new long[] { 1, batchSize, tgtSeqLen, tgtSeqLen }); var tgtSelfMaskRepExp = g.Expand(tgtSelfMaskRep, dims: new long[] { m_multiHeadNum, batchSize, tgtSeqLen, tgtSeqLen }); var decEncAttnMaskRep = g.View(decEncAttnMask, dims: new long[] { 1, batchSize, tgtSeqLen, srcSeqLen }); var decEncAttnMaskRepExp = g.Expand(decEncAttnMaskRep, dims: new long[] { m_multiHeadNum, batchSize, tgtSeqLen, srcSeqLen }); var tgtSelfMaskRepExpView = g.View(tgtSelfMaskRepExp, dims: new long[] { m_multiHeadNum *batchSize *tgtSeqLen, tgtSeqLen }); var decEncAttnMaskRepExpView = g.View(decEncAttnMaskRepExp, dims: new long[] { m_multiHeadNum *batchSize *tgtSeqLen, srcSeqLen }); tgtSelfMaskRep.Dispose(); tgtSelfMaskRepExp.Dispose(); decEncAttnMaskRep.Dispose(); decEncAttnMaskRepExp.Dispose(); using (IComputeGraph subg = g.CreateSubGraph($"{m_name}_Decoder")) { for (int k = 0; k < m_selfAttns.Count; k++) { tgtInputs = g.MaskFill(tgtInputs, tgtDimMask, 0.0f); tgtInputs = m_selfAttns[k].Perform(tgtInputs, tgtInputs, tgtInputs, tgtSelfMaskRepExpView, batchSize, subg); tgtInputs = m_encAttns[k].Perform(tgtInputs, encOutputBatchFirst, encOutputBatchFirst, decEncAttnMaskRepExpView, batchSize, subg); tgtInputs = m_posFFNs[k].Perform(tgtInputs, batchSize, subg); } tgtInputs.UnbindFromComputeGraph(); } tgtInputs = layerNorm.Norm(tgtInputs, g); // tgtInputs = m_decoderFFLayer.Process(tgtInputs, batchSize, g); return(tgtInputs); }
/// <summary> /// Scaled multi-heads attention component with skip connectioned feed forward layers /// </summary> /// <param name="inputQ">The input Q tensor</param> /// <param name="inputK">The input K tensor</param> /// <param name="inputV">The input V tensor</param> /// <param name="batchSize">Batch size of input data set</param> /// <param name="graph">The instance of computing graph</param> /// <returns>Transformered output tensor</returns> public IWeightTensor Perform(IWeightTensor inputQ, IWeightTensor inputK, IWeightTensor inputV, IWeightTensor keyMask, int batchSize, IComputeGraph graph) { using (IComputeGraph g = graph.CreateSubGraph($"{m_name}_MultiHeadAttention")) { int seqLenQ = inputQ.Rows / batchSize; // SeqLenK must be euqal to SeqLenV int seqLenK = inputK.Rows / batchSize; int seqLenV = inputV.Rows / batchSize; IWeightTensor inputQNorm = layerNorm1.Norm(inputQ, g); IWeightTensor inputKNorm = (inputK == inputQ) ? inputQNorm : inputK; // layerNorm1.Norm(inputK, g); IWeightTensor inputVNorm = (inputK == inputV) ? inputKNorm : inputV; // layerNorm1.Norm(inputV, g); //Input projections IWeightTensor allQ = g.View(g.Affine(inputQNorm, Q, Qb), dims: new long[] { batchSize, seqLenQ, m_multiHeadNum, m_d }); IWeightTensor allK = g.View(g.Affine(inputKNorm, K, Kb), dims: new long[] { batchSize, seqLenK, m_multiHeadNum, m_d }); IWeightTensor allV = g.View(g.Affine(inputVNorm, V, Vb), dims: new long[] { batchSize, seqLenV, m_multiHeadNum, m_d }); //Multi-head attentions IWeightTensor Qs = g.View(g.Permute(allQ, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, m_d }); IWeightTensor Ks = g.View(g.Permute(allK, 2, 0, 3, 1), dims: new long[] { m_multiHeadNum *batchSize, m_d, seqLenK }); IWeightTensor Vs = g.View(g.Permute(allV, 2, 0, 1, 3), dims: new long[] { m_multiHeadNum *batchSize, seqLenV, m_d }); // Scaled softmax float scale = 1.0f / (float)Math.Sqrt(m_d); IWeightTensor attn = g.MulBatch(Qs, Ks, m_multiHeadNum * batchSize, scale); IWeightTensor attn2 = g.View(attn, dims: new long[] { m_multiHeadNum *batchSize *seqLenQ, seqLenK }); if (keyMask != null) { // attn2 = g.Add(attn2, mask, runGradient2: false); attn2 = g.MaskFill(attn2, keyMask, -1e9f); } IWeightTensor softmax = g.Softmax(attn2, inPlace: true); IWeightTensor softmax2 = g.View(softmax, dims: new long[] { m_multiHeadNum *batchSize, seqLenQ, seqLenK }); IWeightTensor o = g.View(g.MulBatch(softmax2, Vs, m_multiHeadNum * batchSize), dims: new long[] { m_multiHeadNum, batchSize, seqLenQ, m_d }); IWeightTensor W = g.View(g.Permute(o, 1, 2, 0, 3), dims: new long[] { batchSize *seqLenQ, m_multiHeadNum *m_d }); // Output projection IWeightTensor finalAttResults = g.Dropout(g.Affine(W, W0, b0), batchSize, m_dropoutRatio, inPlace: true); return(graph.Add(finalAttResults, inputQ)); } }
/// <summary> /// Transformer encoder /// </summary> /// <param name="rawInputs"></param> /// <param name="g"></param> /// <returns></returns> public IWeightTensor Encode(IWeightTensor inputs, IWeightTensor selfMask, IWeightTensor dimMask, int batchSize, IComputeGraph g) { int seqLen = inputs.Rows / batchSize; using (IWeightTensor posEmbedding = g.BuildPositionMatrix(seqLen, m_inputDim)) { using (IWeightTensor posEmbeddingRepeat = g.RepeatRows(posEmbedding, batchSize, runGradient: false)) { inputs = g.AddMul(posEmbeddingRepeat, inputs, (float)Math.Sqrt(m_inputDim), runGradientW1: false, runGradientW2: true); } } inputs = g.Dropout(inputs, batchSize, m_dropoutRatio, inPlace: true); var selfMaskRep = g.View(selfMask, dims: new long[] { 1, batchSize, seqLen, seqLen }); var multiHeadhSelfMaskRep = g.Expand(selfMaskRep, dims: new long[] { m_multiHeadNum, batchSize, seqLen, seqLen }); var multiHeadhSelfMaskRepView = g.View(multiHeadhSelfMaskRep, dims: new long[] { m_multiHeadNum *batchSize *seqLen, seqLen }); selfMaskRep.Dispose(); multiHeadhSelfMaskRep.Dispose(); using (IComputeGraph subg = g.CreateSubGraph($"{m_name}_Encoder")) { for (int k = 0; k < m_encoders.Count; k++) { inputs = g.MaskFill(inputs, dimMask, 0.0f); inputs = m_encoders[k].Perform(inputs, inputs, inputs, multiHeadhSelfMaskRepView, batchSize, subg); inputs = m_posFFNs[k].Perform(inputs, batchSize, subg); } inputs.UnbindFromComputeGraph(); } inputs = layerNorm.Norm(inputs, g); return(inputs); }