Пример #1
0
        /// <summary>
        ///     Processes the time increment.
        /// </summary>
        /// <param name="offset">Offset.</param>
        private void ProcessTimeIncrement(float offset)
        {
            offset *= m_TimeScale;

            // Timer isn't playing
            if (!m_IsPlaying)
            {
                return;
            }

            // No change
            if (HydraMathUtils.Approximately(offset, 0.0f))
            {
                return;
            }

            m_Time += offset;

            OnTimeAliveChanged(offset);
        }
Пример #2
0
        /// <summary>
        ///     Returns the maximum value that can be returned given the const/curve settings.
        ///     Note, in the case of curves, this will be inaccurate because there is no
        ///     nice way of getting the bounding box for an animation curve.
        /// </summary>
        /// <returns>The max value.</returns>
        public float GetMaxValue()
        {
            switch (rangeMode)
            {
            case RangeMode.Constant:
                return(m_ConstValueA);

            case RangeMode.Curve:
                return(m_CurveA.GetMaxValue());

            case RangeMode.RandomBetweenTwoConstants:
                return(HydraMathUtils.Max(m_ConstValueA, m_ConstValueB));

            case RangeMode.RandomBetweenTwoCurves:
                return(HydraMathUtils.Max(m_CurveA.GetMaxValue(), m_CurveB.GetMaxValue()));

            default:
                throw new ArgumentOutOfRangeException();
            }
        }
Пример #3
0
        /// <summary>
        ///     Combines the surface values.
        /// </summary>
        /// <returns>The combined surface value.</returns>
        /// <param name="surfaceA">Surface a.</param>
        /// <param name="surfaceB">Surface b.</param>
        /// <param name="combine">Combine.</param>
        public static float Combine(float surfaceA, float surfaceB, PhysicMaterialCombine combine)
        {
            switch (combine)
            {
            case PhysicMaterialCombine.Average:
                return((surfaceA + surfaceB) / 2.0f);

            case PhysicMaterialCombine.Maximum:
                return(HydraMathUtils.Max(surfaceA, surfaceB));

            case PhysicMaterialCombine.Minimum:
                return(HydraMathUtils.Min(surfaceA, surfaceB));

            case PhysicMaterialCombine.Multiply:
                return(surfaceA * surfaceB);

            default:
                throw new ArgumentOutOfRangeException();
            }
        }
        /// <summary>
        ///     Returns an approximation for the greatest value along the curve.
        ///
        ///     Unity doesn't provide a way to get the bounding box, so
        ///     we'll cheat and just check a certain number of samples.
        /// </summary>
        /// <returns>The max value.</returns>
        /// <param name="extends">Extends.</param>
        public static float GetMaxValue(this AnimationCurve extends)
        {
            float max = extends[0].value;

            if (extends.length == 1)
            {
                return(max);
            }

            float startTime  = extends.GetStartTime();
            float lengthTime = extends.GetTimeLength();
            float delta      = CURVE_BOUNDS_DELTA * lengthTime;

            for (int index = 1; index < CURVE_BOUNDS_SAMPLES; index++)
            {
                float time = startTime + delta * index;
                max = HydraMathUtils.Max(max, extends.Evaluate(time));
            }

            return(max);
        }
Пример #5
0
        /// <summary>
        ///     Draws a dot cap handle that returns the distance it was dragged along its normal.
        /// </summary>
        /// <returns>The distance the cap was dragged.</returns>
        /// <param name="position">Position.</param>
        /// <param name="rotation">Rotation.</param>
        /// <param name="normal">Normal.</param>
        public static float NormalMoveHandle(Vector3 position, Quaternion rotation, Vector3 normal)
        {
            Color oldColor = Handles.color;

            // Check if the face is facing the other direction
            if (Vector3.Dot(normal, ToCamera(position)) < 0.0f)
            {
                Handles.color *= new Color(1.0f, 1.0f, 1.0f, 0.5f);
            }

            Vector3 newPosition = Handles.FreeMoveHandle(position, rotation, GetDotSize(position), Vector3.zero, Handles.DotCap);

            Handles.color = oldColor;

            if (newPosition == position)
            {
                return(0.0f);
            }

            Vector3 newVector = newPosition - position;

            if (HydraMathUtils.Approximately(Vector3.Dot(newVector, normal), 0.0f))
            {
                return(0.0f);
            }

            // Calculate how far the point was dragged along the normal
            float angle = Vector3.Angle(normal, newVector);

            bool positive = (angle < 90.0f);

            if (angle > 90.0f)
            {
                angle = 180.0f - angle;
            }

            float adjacent = Mathf.Cos(Mathf.Deg2Rad * angle) * newVector.magnitude;

            return((positive) ? adjacent * 1.0f : adjacent * -1.0f);
        }
Пример #6
0
        /// <summary>
        ///     Performs a 2D raycast without discarding the Z component.
        ///
        ///     This method also ignores any collision at the start of the ray. This is consistent
        ///     with the 3D raycast behaviour.
        /// </summary>
        /// <returns>The collision data.</returns>
        /// <param name="origin">Origin.</param>
        /// <param name="direction">Direction.</param>
        /// <param name="distance">Distance.</param>
        /// <param name="layerMask">Layer mask.</param>
        /// <param name="minDepth">Minimum depth.</param>
        /// <param name="maxDepth">Max depth.</param>
        public static Hit2DWrapper Raycast2D(Vector3 origin, Vector3 direction, float distance, int layerMask, float minDepth,
                                             float maxDepth)
        {
            if (layerMask == LayerMaskUtils.EMPTY)
            {
                return(default(Hit2DWrapper));
            }

            RaycastHit2D[] collisions = Physics2D.RaycastAll(origin, direction, distance, layerMask, minDepth, maxDepth);

            for (int index = 0; index < collisions.Length; index++)
            {
                RaycastHit2D hit2D = collisions[index];

                if (HydraMathUtils.Approximately(hit2D.fraction, 0.0f))
                {
                    continue;
                }

                return(new Hit2DWrapper(hit2D, origin, 0.0f, direction, distance));
            }

            return(default(Hit2DWrapper));
        }
Пример #7
0
        /// <summary>
        ///     Draws a cone size handle.
        /// </summary>
        /// <returns>The radius, angle and length in a Vector3 tuple.</returns>
        /// <param name="rotation">Rotation.</param>
        /// <param name="position">Position.</param>
        /// <param name="radius">Radius.</param>
        /// <param name="angle">Angle.</param>
        /// <param name="length">Length.</param>
        public static Vector3 ConeSizeHandle(Quaternion rotation, Vector3 position, float radius, float angle, float length)
        {
            // Base circle
            radius = CircleRadiusHandle(rotation, position, radius);

            // Now we need to do some maths to get the radius of the secondary circle
            float secondaryRadius = radius + Mathf.Tan(Mathf.Deg2Rad * angle) * length;

            // Draw the struts
            Vector3 secondaryCirclePosition = position + rotation * Vector3.forward * length;

            Handles.DrawLine(position + rotation * Vector3.up * radius,
                             secondaryCirclePosition + rotation * Vector3.up * secondaryRadius);
            Handles.DrawLine(position + rotation * Vector3.down * radius,
                             secondaryCirclePosition + rotation * Vector3.down * secondaryRadius);
            Handles.DrawLine(position + rotation * Vector3.left * radius,
                             secondaryCirclePosition + rotation * Vector3.left * secondaryRadius);
            Handles.DrawLine(position + rotation * Vector3.right * radius,
                             secondaryCirclePosition + rotation * Vector3.right * secondaryRadius);

            // Draw the secondary circle
            float newSecondaryRadius = CircleRadiusHandle(rotation, secondaryCirclePosition, secondaryRadius);

            newSecondaryRadius = HydraMathUtils.Max(newSecondaryRadius, radius);

            if (!HydraMathUtils.Approximately(newSecondaryRadius, secondaryRadius))
            {
                float delta = newSecondaryRadius - radius;
                angle = Mathf.Rad2Deg * Mathf.Atan(delta / length);
            }

            // Draw the dot in the middle of the secondary circle
            length += NormalMoveHandle(secondaryCirclePosition, rotation, rotation * Vector3.forward);

            return(new Vector3(radius, angle, length));
        }
Пример #8
0
        /// <summary>
        ///     4D simplex noise
        /// </summary>
        /// <param name="x">The x coordinate.</param>
        /// <param name="y">The y coordinate.</param>
        /// <param name="z">The z coordinate.</param>
        /// <param name="w">The w coordinate.</param>
        public static double Noise(double x, double y, double z, double w)
        {
            // The skewing and unskewing factors are hairy again for the 4D case
            double F4 = (s_Root5 - 1.0) / 4.0;
            double G4 = (5.0 - s_Root5) / 20.0;
            double n0, n1, n2, n3, n4;             // Noise contributions from the five corners
            // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
            double s  = (x + y + z + w) * F4;      // Factor for 4D skewing
            int    i  = HydraMathUtils.FloorToInt(x + s);
            int    j  = HydraMathUtils.FloorToInt(y + s);
            int    k  = HydraMathUtils.FloorToInt(z + s);
            int    l  = HydraMathUtils.FloorToInt(w + s);
            double t  = (i + j + k + l) * G4; // Factor for 4D unskewing
            double X0 = i - t;                // Unskew the cell origin back to (x,y,z,w) space
            double Y0 = j - t;
            double Z0 = k - t;
            double W0 = l - t;
            double x0 = x - X0;             // The x,y,z,w distances from the cell origin
            double y0 = y - Y0;
            double z0 = z - Z0;
            double w0 = w - W0;
            // For the 4D case, the simplex is a 4D shape I won't even try to describe.
            // To find out which of the 24 possible simplices we're in, we need to
            // determine the magnitude ordering of x0, y0, z0 and w0.
            // The method below is a good way of finding the ordering of x,y,z,w and
            // then find the correct traversal order for the simplex we’re in.
            // First, six pair-wise comparisons are performed between each possible pair
            // of the four coordinates, and the results are used to add up binary bits
            // for an integer index.
            int c1 = (x0 > y0) ? 32 : 0;
            int c2 = (x0 > z0) ? 16 : 0;
            int c3 = (y0 > z0) ? 8 : 0;
            int c4 = (x0 > w0) ? 4 : 0;
            int c5 = (y0 > w0) ? 2 : 0;
            int c6 = (z0 > w0) ? 1 : 0;
            int c  = c1 + c2 + c3 + c4 + c5 + c6;

            // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
            // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
            // impossible. Only the 24 indices which have non-zero entries make any sense.
            // We use a thresholding to set the coordinates in turn from the largest magnitude.
            // The number 3 in the "simplex" array is at the position of the largest coordinate.
            int i1 = s_Simplex[c][0] >= 3 ? 1 : 0;
            int j1 = s_Simplex[c][1] >= 3 ? 1 : 0;
            int k1 = s_Simplex[c][2] >= 3 ? 1 : 0;
            int l1 = s_Simplex[c][3] >= 3 ? 1 : 0;

            // The number 2 in the "simplex" array is at the second largest coordinate.
            int i2 = s_Simplex[c][0] >= 2 ? 1 : 0;
            int j2 = s_Simplex[c][1] >= 2 ? 1 : 0;
            int k2 = s_Simplex[c][2] >= 2 ? 1 : 0;
            int l2 = s_Simplex[c][3] >= 2 ? 1 : 0;

            // The number 1 in the "simplex" array is at the second smallest coordinate.
            int i3 = s_Simplex[c][0] >= 1 ? 1 : 0;
            int j3 = s_Simplex[c][1] >= 1 ? 1 : 0;
            int k3 = s_Simplex[c][2] >= 1 ? 1 : 0;
            int l3 = s_Simplex[c][3] >= 1 ? 1 : 0;

            // The fifth corner has all coordinate offsets = 1, so no need to look that up.
            double x1 = x0 - i1 + G4;             // Offsets for second corner in (x,y,z,w) coords
            double y1 = y0 - j1 + G4;
            double z1 = z0 - k1 + G4;
            double w1 = w0 - l1 + G4;
            double x2 = x0 - i2 + 2.0 * G4;             // Offsets for third corner in (x,y,z,w) coords
            double y2 = y0 - j2 + 2.0 * G4;
            double z2 = z0 - k2 + 2.0 * G4;
            double w2 = w0 - l2 + 2.0 * G4;
            double x3 = x0 - i3 + 3.0 * G4;             // Offsets for fourth corner in (x,y,z,w) coords
            double y3 = y0 - j3 + 3.0 * G4;
            double z3 = z0 - k3 + 3.0 * G4;
            double w3 = w0 - l3 + 3.0 * G4;
            double x4 = x0 - 1.0 + 4.0 * G4;             // Offsets for last corner in (x,y,z,w) coords
            double y4 = y0 - 1.0 + 4.0 * G4;
            double z4 = z0 - 1.0 + 4.0 * G4;
            double w4 = w0 - 1.0 + 4.0 * G4;
            // Work out the hashed gradient indices of the five simplex corners
            int ii  = i & 255;
            int jj  = j & 255;
            int kk  = k & 255;
            int ll  = l & 255;
            int gi0 = s_Perm[ii + s_Perm[jj + s_Perm[kk + s_Perm[ll]]]] % 32;
            int gi1 = s_Perm[ii + i1 + s_Perm[jj + j1 + s_Perm[kk + k1 + s_Perm[ll + l1]]]] % 32;
            int gi2 = s_Perm[ii + i2 + s_Perm[jj + j2 + s_Perm[kk + k2 + s_Perm[ll + l2]]]] % 32;
            int gi3 = s_Perm[ii + i3 + s_Perm[jj + j3 + s_Perm[kk + k3 + s_Perm[ll + l3]]]] % 32;
            int gi4 = s_Perm[ii + 1 + s_Perm[jj + 1 + s_Perm[kk + 1 + s_Perm[ll + 1]]]] % 32;
            // Calculate the contribution from the five corners
            double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;

            if (t0 < 0)
            {
                n0 = 0.0;
            }
            else
            {
                t0 *= t0;
                n0  = t0 * t0 * Dot(s_Grad4[gi0], x0, y0, z0, w0);
            }
            double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;

            if (t1 < 0)
            {
                n1 = 0.0;
            }
            else
            {
                t1 *= t1;
                n1  = t1 * t1 * Dot(s_Grad4[gi1], x1, y1, z1, w1);
            }
            double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;

            if (t2 < 0)
            {
                n2 = 0.0;
            }
            else
            {
                t2 *= t2;
                n2  = t2 * t2 * Dot(s_Grad4[gi2], x2, y2, z2, w2);
            }
            double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;

            if (t3 < 0)
            {
                n3 = 0.0;
            }
            else
            {
                t3 *= t3;
                n3  = t3 * t3 * Dot(s_Grad4[gi3], x3, y3, z3, w3);
            }
            double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;

            if (t4 < 0)
            {
                n4 = 0.0;
            }
            else
            {
                t4 *= t4;
                n4  = t4 * t4 * Dot(s_Grad4[gi4], x4, y4, z4, w4);
            }
            // Sum up and scale the result to cover the range [-1,1]
            return(27.0 * (n0 + n1 + n2 + n3 + n4));
        }
Пример #9
0
        // 3D simplex noise
        public static double Noise(double xin, double yin, double zin)
        {
            double n0, n1, n2, n3;              // Noise contributions from the four corners
            // Skew the input space to determine which simplex cell we're in
            double s  = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
            int    i  = HydraMathUtils.FloorToInt(xin + s);
            int    j  = HydraMathUtils.FloorToInt(yin + s);
            int    k  = HydraMathUtils.FloorToInt(zin + s);
            double t  = (i + j + k) * G3;
            double X0 = i - t;             // Unskew the cell origin back to (x,y,z) space
            double Y0 = j - t;
            double Z0 = k - t;
            double x0 = xin - X0;             // The x,y,z distances from the cell origin
            double y0 = yin - Y0;
            double z0 = zin - Z0;
            // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
            // Determine which simplex we are in.
            int i1, j1, k1;             // Offsets for second corner of simplex in (i,j,k) coords
            int i2, j2, k2;             // Offsets for third corner of simplex in (i,j,k) coords

            if (x0 >= y0)
            {
                if (y0 >= z0)
                {
                    i1 = 1;
                    j1 = 0;
                    k1 = 0;
                    i2 = 1;
                    j2 = 1;
                    k2 = 0;
                }                 // X Y Z order
                else if (x0 >= z0)
                {
                    i1 = 1;
                    j1 = 0;
                    k1 = 0;
                    i2 = 1;
                    j2 = 0;
                    k2 = 1;
                }                 // X Z Y order
                else
                {
                    i1 = 0;
                    j1 = 0;
                    k1 = 1;
                    i2 = 1;
                    j2 = 0;
                    k2 = 1;
                }                 // Z X Y order
            }
            else
            {
                // x0<y0
                if (y0 < z0)
                {
                    i1 = 0;
                    j1 = 0;
                    k1 = 1;
                    i2 = 0;
                    j2 = 1;
                    k2 = 1;
                }                 // Z Y X order
                else if (x0 < z0)
                {
                    i1 = 0;
                    j1 = 1;
                    k1 = 0;
                    i2 = 0;
                    j2 = 1;
                    k2 = 1;
                }                 // Y Z X order
                else
                {
                    i1 = 0;
                    j1 = 1;
                    k1 = 0;
                    i2 = 1;
                    j2 = 1;
                    k2 = 0;
                }                 // Y X Z order
            }
            // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
            // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
            // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
            // c = 1/6.
            double x1 = x0 - i1 + G3;             // Offsets for second corner in (x,y,z) coords
            double y1 = y0 - j1 + G3;
            double z1 = z0 - k1 + G3;
            double x2 = x0 - i2 + 2.0 * G3;             // Offsets for third corner in (x,y,z) coords
            double y2 = y0 - j2 + 2.0 * G3;
            double z2 = z0 - k2 + 2.0 * G3;
            double x3 = x0 - 1.0 + 3.0 * G3;             // Offsets for last corner in (x,y,z) coords
            double y3 = y0 - 1.0 + 3.0 * G3;
            double z3 = z0 - 1.0 + 3.0 * G3;
            // Work out the hashed gradient indices of the four simplex corners
            int ii  = i & 255;
            int jj  = j & 255;
            int kk  = k & 255;
            int gi0 = s_Perm[ii + s_Perm[jj + s_Perm[kk]]] % 12;
            int gi1 = s_Perm[ii + i1 + s_Perm[jj + j1 + s_Perm[kk + k1]]] % 12;
            int gi2 = s_Perm[ii + i2 + s_Perm[jj + j2 + s_Perm[kk + k2]]] % 12;
            int gi3 = s_Perm[ii + 1 + s_Perm[jj + 1 + s_Perm[kk + 1]]] % 12;
            // Calculate the contribution from the four corners
            double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;

            if (t0 < 0)
            {
                n0 = 0.0;
            }
            else
            {
                t0 *= t0;
                n0  = t0 * t0 * Dot(s_Grad3[gi0], x0, y0, z0);
            }
            double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;

            if (t1 < 0)
            {
                n1 = 0.0;
            }
            else
            {
                t1 *= t1;
                n1  = t1 * t1 * Dot(s_Grad3[gi1], x1, y1, z1);
            }
            double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;

            if (t2 < 0)
            {
                n2 = 0.0;
            }
            else
            {
                t2 *= t2;
                n2  = t2 * t2 * Dot(s_Grad3[gi2], x2, y2, z2);
            }
            double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;

            if (t3 < 0)
            {
                n3 = 0.0;
            }
            else
            {
                t3 *= t3;
                n3  = t3 * t3 * Dot(s_Grad3[gi3], x3, y3, z3);
            }
            // Add contributions from each corner to get the final noise value.
            // The result is scaled to stay just inside [-1,1]
            return(32.0 * (n0 + n1 + n2 + n3));
        }
Пример #10
0
        // 2D simplex noise
        public static double Noise(double xin, double yin)
        {
            double n0, n1, n2;              // Noise contributions from the three corners
            // Skew the input space to determine which simplex cell we're in
            double s  = (xin + yin) * s_F2; // Hairy factor for 2D
            int    i  = HydraMathUtils.FloorToInt(xin + s);
            int    j  = HydraMathUtils.FloorToInt(yin + s);
            double t  = (i + j) * s_G2;
            double X0 = i - t;             // Unskew the cell origin back to (x,y) space
            double Y0 = j - t;
            double x0 = xin - X0;          // The x,y distances from the cell origin
            double y0 = yin - Y0;
            // For the 2D case, the simplex shape is an equilateral triangle.
            // Determine which simplex we are in.
            int i1, j1;             // Offsets for second (middle) corner of simplex in (i,j) coords

            if (x0 > y0)
            {
                i1 = 1;
                j1 = 0;
            }             // lower triangle, XY order: (0,0)->(1,0)->(1,1)
            else
            {
                i1 = 0;
                j1 = 1;
            }             // upper triangle, YX order: (0,0)->(0,1)->(1,1)
            // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
            // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
            // c = (3-Sqrt(3))/6
            double x1 = x0 - i1 + s_G2;             // Offsets for middle corner in (x,y) unskewed coords
            double y1 = y0 - j1 + s_G2;
            double x2 = x0 - 1.0 + 2.0 * s_G2;      // Offsets for last corner in (x,y) unskewed coords
            double y2 = y0 - 1.0 + 2.0 * s_G2;
            // Work out the hashed gradient indices of the three simplex corners
            int ii  = i & 255;
            int jj  = j & 255;
            int gi0 = s_Perm[ii + s_Perm[jj]] % 12;
            int gi1 = s_Perm[ii + i1 + s_Perm[jj + j1]] % 12;
            int gi2 = s_Perm[ii + 1 + s_Perm[jj + 1]] % 12;
            // Calculate the contribution from the three corners
            double t0 = 0.5 - x0 * x0 - y0 * y0;

            if (t0 < 0)
            {
                n0 = 0.0;
            }
            else
            {
                t0 *= t0;
                n0  = t0 * t0 * Dot(s_Grad3[gi0], x0, y0);                // (x,y) of grad3 used for 2D gradient
            }
            double t1 = 0.5 - x1 * x1 - y1 * y1;

            if (t1 < 0)
            {
                n1 = 0.0;
            }
            else
            {
                t1 *= t1;
                n1  = t1 * t1 * Dot(s_Grad3[gi1], x1, y1);
            }
            double t2 = 0.5 - x2 * x2 - y2 * y2;

            if (t2 < 0)
            {
                n2 = 0.0;
            }
            else
            {
                t2 *= t2;
                n2  = t2 * t2 * Dot(s_Grad3[gi2], x2, y2);
            }
            // Add contributions from each corner to get the final noise value.
            // The result is scaled to return values in the interval [-1,1].
            return(70.0 * (n0 + n1 + n2));
        }
Пример #11
0
 /// <summary>
 ///     Validates the time scale.
 /// </summary>
 /// <returns>The time scale.</returns>
 /// <param name="scale">Scale.</param>
 public static float ValidateTimeScale(float scale)
 {
     return(HydraMathUtils.Clamp(scale, 0.0f, 10.0f));
 }
Пример #12
0
 /// <summary>
 ///     Validates the start delay.
 /// </summary>
 /// <returns>The start delay.</returns>
 /// <param name="delay">Delay.</param>
 public static float ValidateStartDelay(float delay)
 {
     return(HydraMathUtils.Max(delay, 0.0f));
 }
Пример #13
0
 /// <summary>
 ///     Returns a float in the range min-max.
 /// </summary>
 /// <param name="min">Minimum.</param>
 /// <param name="max">Maximum.</param>
 public float Range(float min, float max)
 {
     return(HydraMathUtils.MapRange(0.0f, 1.0f, min, max, value));
 }
Пример #14
0
        /// <summary>
        ///     Returns an int in the min-max range, min inclusive.
        /// </summary>
        /// <param name="min">Minimum.</param>
        /// <param name="max">Maximum.</param>
        public int Range(int min, int max)
        {
            float range = Range((float)min, (float)max);

            return(HydraMathUtils.FloorToInt(range));
        }