Пример #1
0
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="UsesEqualDefGibbsOp{T}"]/message_doc[@name="GibbsEvidence{TDist}(IList{TDist}, TDist, GibbsMarginal{TDist, T})"]/*'/>
 /// <typeparam name="TDist">The type of the distribution over the variable.</typeparam>
 public static double GibbsEvidence <TDist>(IList <TDist> Uses, TDist Def, GibbsMarginal <TDist, T> to_marginal)
     where TDist : IDistribution <T>, Sampleable <T>, CanGetLogAverageOf <TDist>, SettableTo <TDist>, SettableToProduct <TDist>
 {
     if (Uses.Count == 1)
     {
         // the total evidence contribution of this variable should be Def.GetLogAverageOf(Uses[0]).
         // but since this variable is sending a sample to Def and Use, and those factors will send their own evidence contribution,
         // we need to cancel the contribution of those factors here.
         return(Def.GetLogAverageOf(Uses[0]) - Def.GetLogProb(to_marginal.LastSample) - Uses[0].GetLogProb(to_marginal.LastSample));
     }
     else
     {
         //throw new InferRuntimeException("Gibbs Sampling does not support variables defined within a gate");
         double z             = 0.0;
         TDist  productBefore = (TDist)Def.Clone();
         TDist  product       = (TDist)Def.Clone();
         for (int i = 0; i < Uses.Count; i++)
         {
             if (i > 0)
             {
                 product.SetToProduct(productBefore, Uses[i - 1]);
             }
             z += product.GetLogAverageOf(Uses[i]);
             productBefore.SetTo(product);
         }
         // z is now log(sum_x Def(x)*prod_i Uses[i](x)), which is the desired total evidence.
         // but we must also cancel the contribution of the parent and child factors that received a sample from us.
         z -= Def.GetLogProb(to_marginal.LastSample);
         for (int i = 0; i < Uses.Count; i++)
         {
             z -= Uses[i].GetLogProb(to_marginal.LastSample);
         }
         return(z);
     }
 }
        /// <summary>Computations that depend on the observed value of firstCoin and numberOfIterations</summary>
        /// <param name="numberOfIterations">The number of times to iterate each loop</param>
        private void Changed_firstCoin_numberOfIterations(int numberOfIterations)
        {
            if (this.Changed_firstCoin_numberOfIterations_isDone)
            {
                return;
            }
            bool[]      secondCoin_uses_F;
            Bernoulli[] secondCoin_uses_B;
            // Create array for 'secondCoin_uses' Forwards messages.
            secondCoin_uses_F = new bool[1];
            // Create array for 'secondCoin_uses' Backwards messages.
            secondCoin_uses_B    = new Bernoulli[1];
            secondCoin_uses_B[0] = Bernoulli.Uniform();
            bool bothHeads_F = default(bool);

            for (int iteration = this.numberOfIterationsDone; iteration < numberOfIterations; iteration++)
            {
                // Message to 'secondCoin_marginal' from UsesEqualDef factor
                this.secondCoin_marginal_F = UsesEqualDefGibbsOp <bool> .MarginalGibbs <Bernoulli>(secondCoin_uses_B, this.vBernoulli0, this.secondCoin_marginal_F);

                // Message to 'secondCoin_uses' from UsesEqualDef factor
                secondCoin_uses_F[0] = UsesEqualDefGibbsOp <bool> .UsesGibbs <Bernoulli>(this.secondCoin_marginal_F, 0, secondCoin_uses_F[0]);

                // Message to 'bothHeads' from And factor
                bothHeads_F = Factor.And(this.FirstCoin, secondCoin_uses_F[0]);
                // Message to 'bothHeads_marginal' from ReplicateWithMarginal factor
                this.bothHeads_marginal_F = ReplicateGibbsOp <bool> .MarginalGibbs <Bernoulli>(bothHeads_F, this.bothHeads_marginal_F);

                this.OnProgressChanged(new ProgressChangedEventArgs(iteration));
            }
            this.Changed_firstCoin_numberOfIterations_isDone = true;
        }
 /// <summary>Computations that depend on the observed value of numberOfIterationsDecreased</summary>
 private void Changed_numberOfIterationsDecreased()
 {
     if (this.Changed_numberOfIterationsDecreased_isDone)
     {
         return;
     }
     this.firstCoin_marginal_F  = new GibbsMarginal <Bernoulli, bool>(this.vBernoulli0, 100, 5, true, true, false);
     this.secondCoin_marginal_F = new GibbsMarginal <Bernoulli, bool>(this.vBernoulli0, 100, 5, true, true, false);
     this.bothHeads_marginal_F  = new GibbsMarginal <Bernoulli, bool>(new Bernoulli(), 100, 5, true, true, false);
     this.Changed_numberOfIterationsDecreased_isDone = true;
 }
 /// <summary>Computations that depend on the observed value of numberOfIterationsDecreased and must reset on changes to firstCoin</summary>
 /// <param name="initialise">If true, reset messages that initialise loops</param>
 private void Changed_numberOfIterationsDecreased_Init_firstCoin(bool initialise)
 {
     if (this.Changed_numberOfIterationsDecreased_Init_firstCoin_isDone && ((!initialise) || this.Changed_numberOfIterationsDecreased_Init_firstCoin_isInitialised))
     {
         return;
     }
     this.secondCoin_marginal_F = new GibbsMarginal <Bernoulli, bool>(this.vBernoulli0, 100, 5, true, true, false);
     this.bothHeads_marginal_F  = new GibbsMarginal <Bernoulli, bool>(new Bernoulli(), 100, 5, true, true, false);
     this.Changed_numberOfIterationsDecreased_Init_firstCoin_isDone        = true;
     this.Changed_numberOfIterationsDecreased_Init_firstCoin_isInitialised = true;
 }
Пример #5
0
        [Stochastic] // must be labelled Stochastic to get correct schedule, even though it isn't Stochastic
        public static GibbsMarginal <TDist, T> MarginalGibbs <TDist, T>(
            T Use, [IgnoreDependency] TDist Def,
            GibbsMarginal <TDist, T> to_marginal)
            where TDist : IDistribution <T>, Sampleable <T>
        {
            GibbsMarginal <TDist, T> result = to_marginal;
            TDist marginal = result.LastConditional;

            marginal.Point         = Use;
            result.LastConditional = marginal;
            // Allow a sample to be drawn from the last conditional, and add it to the sample
            // list and conditional list
            result.PostUpdate();
            return(result);
        }
Пример #6
0
        [Stochastic] // must be labelled Stochastic to get correct schedule, even though it isn't Stochastic
        public static GibbsMarginal <TDist, TDomain> MarginalGibbs <TDist, TDomain>(
            TDomain Def,
            GibbsMarginal <TDist, TDomain> to_marginal)
            where TDist : IDistribution <TDomain>, Sampleable <TDomain>
        {
            GibbsMarginal <TDist, TDomain> result = to_marginal;
            TDist marginal = result.LastConditional;

            marginal.Point         = Def;
            result.LastConditional = marginal;
            // Allow a sample to be drawn from the last conditional, and add it to the sample
            // list and conditional list
            result.PostUpdate();
            return(result);
        }
Пример #7
0
        public static GibbsMarginal <TDist, T> MarginalGibbs <TDist>(
            IList <TDist> Uses,
            T Def,
            GibbsMarginal <TDist, T> to_marginal) // must not be called 'result', because its value is used
            where TDist : IDistribution <T>, SettableToProduct <TDist>, SettableToRatio <TDist>, SettableTo <TDist>, Sampleable <T>
        {
            GibbsMarginal <TDist, T> result = to_marginal;
            TDist marginal = result.LastConditional;

            marginal.Point         = Def;
            result.LastConditional = marginal;
            // Allow a sample to be drawn from the last conditional, and add it to the sample
            // list and conditional list
            result.PostUpdate();
            return(result);
        }
Пример #8
0
        public static GibbsMarginal <TDist, T> MarginalGibbs <TDist, T>(
            TDist Use,
            [SkipIfUniform] TDist Def,
            GibbsMarginal <TDist, T> to_marginal)
            where TDist : IDistribution <T>, SettableToProduct <TDist>, Sampleable <T>
        {
            GibbsMarginal <TDist, T> result = to_marginal;
            TDist marginal = result.LastConditional;

            marginal.SetToProduct(Def, Use);
            result.LastConditional = marginal;
            // Allow a sample to be drawn from the last conditional, and add it to the sample
            // list and conditional list
            result.PostUpdate();
            return(result);
        }
Пример #9
0
        public static GibbsMarginal <TDist, T> MarginalGibbs <TDist, T>(
            T Use,
            [SkipIfUniform] TDist Def,
            GibbsMarginal <TDist, T> to_marginal) // must not be called 'result', because its value is used
            where TDist : IDistribution <T>, Sampleable <T>
        {
            GibbsMarginal <TDist, T> result = to_marginal;
            TDist marginal = result.LastConditional;

            marginal.Point         = Use;
            result.LastConditional = marginal;
            // Allow a sample to be drawn from the last conditional, and add it to the sample
            // list and conditional list
            result.PostUpdate();
            return(result);
        }
Пример #10
0
        [Stochastic] // must be labelled Stochastic to get correct schedule, even though it isn't Stochastic
        public static GibbsMarginal <TDist, T> MarginalGibbs <TDist>(
            T[] Uses,
            GibbsMarginal <TDist, T> to_marginal)
            where TDist : IDistribution <T>, Sampleable <T>
        {
            GibbsMarginal <TDist, T> result = to_marginal;
            TDist marginal = result.LastConditional;

            if (Uses.Length != 1)
            {
                throw new ArgumentException("Uses.Length (" + Uses.Length + ") != 1");
            }
            marginal.Point         = Uses[0];
            result.LastConditional = marginal;
            // Allow a sample to be drawn from the last conditional, and add it to the sample
            // list and conditional list
            result.PostUpdate();
            return(result);
        }
Пример #11
0
        public static GibbsMarginal <TDist, T> MarginalGibbs <TDist>(
            IList <T> Uses,
            [SkipIfUniform] TDist Def,
            GibbsMarginal <TDist, T> to_marginal)            // must not be called 'result', because its value is used
            where TDist : IDistribution <T>, SettableToProduct <TDist>, SettableToRatio <TDist>, SettableTo <TDist>, Sampleable <T>
        {
            if (Uses.Count > 1)
            {
                throw new ArgumentException("Uses.Count > 1");
            }
            GibbsMarginal <TDist, T> result = to_marginal;
            TDist marginal = result.LastConditional;

            marginal.Point         = Uses[0];
            result.LastConditional = marginal;
            // Allow a sample to be drawn from the last conditional, and add it to the sample
            // list and conditional list
            result.PostUpdate();
            return(result);
        }
        /// <summary>Computations that depend on the observed value of bothHeads and numberOfIterations</summary>
        /// <param name="numberOfIterations">The number of times to iterate each loop</param>
        private void Changed_bothHeads_numberOfIterations(int numberOfIterations)
        {
            if (this.Changed_bothHeads_numberOfIterations_isDone)
            {
                return;
            }
            bool[]      firstCoin_uses_F;
            Bernoulli[] firstCoin_uses_B;
            // Create array for 'firstCoin_uses' Forwards messages.
            firstCoin_uses_F = new bool[1];
            // Create array for 'firstCoin_uses' Backwards messages.
            firstCoin_uses_B    = new Bernoulli[1];
            firstCoin_uses_B[0] = Bernoulli.Uniform();
            bool[] secondCoin_uses_F;
            // Create array for 'secondCoin_uses' Forwards messages.
            secondCoin_uses_F = new bool[1];
            for (int iteration = this.numberOfIterationsDone; iteration < numberOfIterations; iteration++)
            {
                // Message to 'secondCoin_marginal' from UsesEqualDef factor
                this.secondCoin_marginal_F = UsesEqualDefGibbsOp <bool> .MarginalGibbs <Bernoulli>(this.secondCoin_uses_B, this.vBernoulli0, this.secondCoin_marginal_F);

                // Message to 'secondCoin_uses' from UsesEqualDef factor
                secondCoin_uses_F[0] = UsesEqualDefGibbsOp <bool> .UsesGibbs <Bernoulli>(this.secondCoin_marginal_F, 0, secondCoin_uses_F[0]);

                // Message to 'firstCoin_uses' from And factor
                firstCoin_uses_B[0] = BooleanAndOp.AAverageConditional(this.BothHeads, secondCoin_uses_F[0]);
                // Message to 'firstCoin_marginal' from UsesEqualDef factor
                this.firstCoin_marginal_F = UsesEqualDefGibbsOp <bool> .MarginalGibbs <Bernoulli>(firstCoin_uses_B, this.vBernoulli0, this.firstCoin_marginal_F);

                // Message to 'firstCoin_uses' from UsesEqualDef factor
                firstCoin_uses_F[0] = UsesEqualDefGibbsOp <bool> .UsesGibbs <Bernoulli>(this.firstCoin_marginal_F, 0, firstCoin_uses_F[0]);

                // Message to 'secondCoin_uses' from And factor
                this.secondCoin_uses_B[0] = BooleanAndOp.BAverageConditional(this.BothHeads, firstCoin_uses_F[0]);
                this.OnProgressChanged(new ProgressChangedEventArgs(iteration));
            }
            this.Changed_bothHeads_numberOfIterations_isDone = true;
        }
Пример #13
0
 public static T UsesGibbs <TDist>([SkipIfUniform] GibbsMarginal <TDist, T> marginal, T def, int resultIndex, T result)
     where TDist : IDistribution <T>, Sampleable <T>
 {
     if (def is bool[])
     {
         if (!Util.ValueEquals((bool[])(object)def, (bool[])(object)marginal.LastSample))
         {
             throw new Exception("gotcha");
         }
     }
     else if (def is double[])
     {
         if (!Util.ValueEquals((double[])(object)def, (double[])(object)marginal.LastSample))
         {
             throw new Exception("gotcha");
         }
     }
     else if (!def.Equals(marginal.LastSample))
     {
         throw new Exception("gotcha");
     }
     return(marginal.LastSample);
 }
Пример #14
0
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="UsesEqualDefGibbsOp{T}"]/message_doc[@name="DefGibbs{TDist}(GibbsMarginal{TDist, T}, T)"]/*'/>
 /// <typeparam name="TDist">The type of the distribution over the variable.</typeparam>
 public static T DefGibbs <TDist>([SkipIfUniform] GibbsMarginal <TDist, T> to_marginal, T result)
     where TDist : IDistribution <T>, Sampleable <T>
 {
     return(to_marginal.LastSample);
 }
Пример #15
0
 /// <summary>
 /// Gibbs evidence
 /// </summary>
 /// <returns></returns>
 public static double GibbsEvidence <TDist, T>(TDist Use, TDist Def, GibbsMarginal <TDist, T> marginal)
     where TDist : IDistribution <T>, Sampleable <T>, CanGetLogAverageOf <TDist>
 {
     return(Def.GetLogAverageOf(Use) - Def.GetLogProb(marginal.LastSample) - Use.GetLogProb(marginal.LastSample));
 }
Пример #16
0
 /// <summary>
 /// Gibbs sample message to 'Uses'
 /// </summary>
 /// <typeparam name="TDist">Gibbs marginal type</typeparam>
 /// <typeparam name="T">Domain type</typeparam>
 /// <param name="marginal">The Gibbs marginal</param>
 /// <param name="def"></param>
 /// <param name="result">Result</param>
 /// <returns></returns>
 /// <remarks><para>
 /// The outgoing message is the current Gibbs sample.
 /// </para></remarks>
 public static T UseGibbs <TDist, T>([SkipIfUniform] GibbsMarginal <TDist, T> marginal, TDist def, T result)
     where TDist : IDistribution <T>, Sampleable <T>
 {
     // This method must depend on Def, even though Def isn't used, in order to get the right triggers
     return(marginal.LastSample);
 }
Пример #17
0
 public static T UsesGibbs <TDist>([SkipIfUniform] GibbsMarginal <TDist, T> marginal, TDist def, int resultIndex, T result)
     where TDist : IDistribution <T>, Sampleable <T>
 {
     return(marginal.LastSample);
 }
Пример #18
0
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="ReplicateGibbsOp{T}"]/message_doc[@name="UsesGibbs{TDist}(GibbsMarginal{TDist, T}, TDist, int, T)"]/*'/>
 /// <typeparam name="TDist">The type of the distribution over the replicated variable.</typeparam>
 public static T UsesGibbs <TDist>([SkipIfUniform] GibbsMarginal <TDist, T> to_marginal, [IgnoreDependency] TDist def, [IgnoreDependency] int resultIndex, T result)
     where TDist : IDistribution <T>, Sampleable <T>
 {
     // This method must depend on Def, even though Def isn't used, in order to get the right triggers
     return(to_marginal.LastSample);
 }