Пример #1
0
        void Camera_FrameAvailable(VideoFrame frame)
        {
            if (closing)
            {
                return;
            }

            ImageTemplate template = new ImageTemplate(frame.Clone());

            FPS.Camera.Update();

            Task.Factory.StartNew(() =>
            {
                try
                {
                    Logging.LogVideoFrame(frame.Image.Bitmap);

                    float focus = 0;
                    if (Monitor.TryEnter(preprocessingLock))
                    {
                        ImageProcessing.ProcessTemplate(template, false);
                        focus = ImageProcessing.ImageFocus(template);
                        Logging.LogFrameProcessed();
                        currTemplate = template;
                        FPS.Instance("processing").Update();
                        Monitor.Exit(preprocessingLock);
                    }
                    else
                    {
                        return;
                    }

                    string coarseLocation          = "", fineLocation = "";
                    float coarseProbability        = 0, fineProbability = 0;
                    bool hasUpdate                 = false;
                    string predictedCoarseLocation = "", predictedFineLocation = "";
                    if (touchDown && !trainingForm.Training && Monitor.TryEnter(recognitionLock))
                    {
                        try
                        {
                            if (Localization.Instance.GetNumTrainingExamples() > 0)
                            {
                                Dictionary <string, float> coarseProbabilities = new Dictionary <string, float>();
                                predictedCoarseLocation = Localization.Instance.PredictCoarseLocation(currTemplate, out coarseProbabilities);
                                coarseLocation          = predictedCoarseLocation;

                                if (!Properties.Settings.Default.CoarseOnly)
                                {
                                    bool foundFeatureMatch = false;
                                    Dictionary <string, float> fineProbabilities = new Dictionary <string, float>();
                                    predictedFineLocation = Localization.Instance.PredictFineLocation(currTemplate, out foundFeatureMatch, out fineProbabilities, true, false, false, coarseLocation);
                                    fineLocation          = predictedFineLocation;
                                }

                                Logging.LogLocationEvent(predictedCoarseLocation + " " + predictedFineLocation);

                                FPS.Instance("matching").Update();
                                hasUpdate = true;
                            }

                            if (autoTrainLocation && (coarseLocation != coarseLocationToTrain || fineLocation != fineLocationToTrain) && Monitor.TryEnter(trainingLock))
                            {
                                trainingForm.Training     = true;
                                ImageTemplate newTemplate = CopyTemplate(currTemplate);
                                Invoke(new MethodInvoker(delegate { TrainingLabel.Visible = true; }));
                                if (Properties.Settings.Default.EnableSoundEffects)
                                {
                                    captureSound.Play(); Logging.LogAudioEvent("capture", false);
                                }
                                AddTemplate(newTemplate);
                                Logging.LogTrainingEvent("Added template: " + newTemplate["coarse"] + " " + newTemplate["fine"]);
                                Thread.Sleep(100);
                                //if (Properties.Settings.Default.EnableSoundEffects) { beepSound.Play(); Logging.LogAudioEvent("beep", false); }
                                trainingForm.IsSaved  = false;
                                trainingForm.Training = false;
                                Invoke(new MethodInvoker(delegate { TrainingLabel.Visible = false; }));
                                Monitor.Exit(trainingLock);
                                return;
                            }
                        }
                        finally
                        {
                            Monitor.Exit(recognitionLock);
                        }
                    }

                    //LBP.GetInstance(frame.Image.Size).GetHistogram(frame);
                    Invoke(new MethodInvoker(delegate
                    {
                        Display.Image = frame.Image.Bitmap;
                        if (hasUpdate)
                        {
                            CoarsePredictionLabel.Text = coarseLocation;
                            FinePredictionLabel.Text   = fineLocation;
                        }
                        Text = FPS.Camera.Average.ToString("0") + " fps camera / " + (Sensors.Instance.IsConnected ? FPS.Sensors.Average.ToString("0") + " fps sensors / " + FPS.Instance("processing").Average.ToString("0") + "/" + FPS.Instance("matching").Average.ToString("0") + " fps processing" : "Waiting for Sensors") /*+ " / focus = " + focus.ToString("0")*/;
                    }));
                }
                catch { }
            });
        }
Пример #2
0
        //private static void TesseractDownloadLangFile(String folder, String lang)
        //{
        //    String subfolderName = "tessdata";
        //    String folderName = System.IO.Path.Combine(folder, subfolderName);
        //    if (!System.IO.Directory.Exists(folderName))
        //    {
        //        System.IO.Directory.CreateDirectory(folderName);
        //    }
        //    String dest = System.IO.Path.Combine(folderName, String.Format("{0}.traineddata", lang));
        //    if (!System.IO.File.Exists(dest))
        //        using (System.Net.WebClient webclient = new System.Net.WebClient())
        //        {
        //            String source =
        //                String.Format("https://github.com/tesseract-ocr/tessdata/blob/4592b8d453889181e01982d22328b5846765eaad/{0}.traineddata?raw=true", lang);

        //            Console.WriteLine(String.Format("Downloading file from '{0}' to '{1}'", source, dest));
        //            webclient.DownloadFile(source, dest);
        //            Console.WriteLine(String.Format("Download completed"));
        //        }
        //}

        //private void InitOcr(String path, String lang, OcrEngineMode mode)
        //{
        //    try
        //    {
        //        if (ocr != null)
        //        {
        //            ocr.Dispose();
        //            ocr = null;
        //        }

        //        if (String.IsNullOrEmpty(path))
        //            path = ".";

        //        TesseractDownloadLangFile(path, lang);
        //        TesseractDownloadLangFile(path, "osd"); //script orientation detection
        //        String pathFinal = path.Length == 0 ||
        //                           path.Substring(path.Length - 1, 1).Equals(Path.DirectorySeparatorChar.ToString())
        //            ? path
        //            : String.Format("{0}{1}", path, System.IO.Path.DirectorySeparatorChar);

        //        ocr = new Tesseract(pathFinal, lang, mode);
        //    }
        //    catch (System.Net.WebException e)
        //    {
        //        ocr = null;
        //        throw new Exception("Unable to download tesseract lang file. Please check internet connection.", e);
        //    }
        //    catch (Exception e)
        //    {
        //        ocr = null;
        //    }
        //}

        private void Camera_FrameAvailable(Bitmap frame)
        {
            try
            {
                if (frame == null)
                {
                    return;
                }

                FPS.Camera.Update();

                if (enableThreshold || invertImage)
                {
                    var img = new Image <Gray, byte>(frame);
                    if (enableThreshold)
                    {
                        //CvInvoke.EqualizeHist(img, img);

                        if (thresholdMode == 0)
                        {
                            CvInvoke.Threshold(img, img, 100, 255, Emgu.CV.CvEnum.ThresholdType.Otsu);
                        }
                        else if (thresholdMode == 1)
                        {
                            CvInvoke.AdaptiveThreshold(img, img, 255, Emgu.CV.CvEnum.AdaptiveThresholdType.GaussianC, Emgu.CV.CvEnum.ThresholdType.Binary, 31, 15);
                        }

                        //CvInvoke.MedianBlur(img, img, 7);
                        //CvInvoke.Dilate(img, img, null, new Point(-1, -1), 1, Emgu.CV.CvEnum.BorderType.Constant, new MCvScalar(255));
                        //CvInvoke.Erode(img, img, null, new Point(-1, -1), 1, Emgu.CV.CvEnum.BorderType.Constant, new MCvScalar(255));
                    }
                    if (invertImage)
                    {
                        img = 255 - img;
                    }
                    frame = img.ToBitmap();
                }
                //else if(gamma != 1)
                //{
                //    var img = new Image<Gray, float>(frame);
                //    CvInvoke.Pow(img, gamma, img);
                //    frame = img.ToBitmap();
                //}

                Bitmap imageCopy = (Bitmap)frame.Clone();
                Invoke(new MethodInvoker(delegate
                {
                    try
                    {
                        if (Display.Image != null)
                        {
                            Display.Image.Dispose();
                        }
                        Display.Image = imageCopy;
                    }
                    catch (Exception ex) { Debug.WriteLine("Error updating camera image: " + ex.ToString()); }
                }));

                //var img = new Image<Gray, byte>(frame);

                ////if (ocr != null)
                ////{
                ////    ocr.SetImage(img);
                ////    ocr.Recognize();
                ////    var chars = ocr.GetCharacters();
                ////}

                //VectorOfERStat regions = new VectorOfERStat();
                //textDetector.Run(img, regions);

                //img.Dispose();

                double   frameTime = enableCamera ? 1.0 / frameRate : 1;
                DateTime currTime  = DateTime.Now;
                if ((currTime - lastFrameSent).TotalSeconds > frameTime && !pauseStreaming)
                {
                    FPS.Instance("Stream").Update();



                    frame.RotateFlip(RotateFlipType.Rotate180FlipNone);
                    Bitmap   newFrame = new Bitmap((int)(frame.Width * prescale), (int)(frame.Height * prescale));
                    Graphics g        = Graphics.FromImage(newFrame);
                    g.DrawImage(enableCamera ? frame : (invertImage ? invertedPlaceholderImage : placeholderImage), 0, 0, newFrame.Width, newFrame.Height);
                    server.SendImage(newFrame);
                    newFrame.Dispose();
                    //frame.Dispose();

                    lastFrameSent = currTime;

                    Invoke(new MethodInvoker(delegate
                    {
                        try
                        {
                            InfoLabel.Text = "Camera " + FPS.Camera.Average.ToString("0") + " fps, Stream " + FPS.Instance("Stream").Average.ToString("0") + " fps";
                        }
                        catch (Exception ex) { Debug.WriteLine("Error setting info label text: " + ex.ToString()); }
                    }));
                }
            }
            catch (Exception ex) { Debug.WriteLine("Error processing frame from finger camera: " + ex.ToString()); }
        }
Пример #3
0
        void Camera_FrameAvailable(VideoFrame frame)
        {
            if (closing)
            {
                return;
            }

            numLocationPredictions = Properties.Settings.Default.TestingMode.Contains("Training") ? 1 : Properties.Settings.Default.PredictionSmoothing;

            ImageTemplate template = new ImageTemplate(frame.Clone());

            FPS.Camera.Update();

            Task.Factory.StartNew(() =>
            {
                try
                {
                    Logging.LogVideoFrame(frame.Image.Bitmap);

                    float focus = 0;
                    //lock (processingLock)
                    if (Monitor.TryEnter(preprocessingLock))
                    {
                        ImageProcessing.ProcessTemplate(template, false);
                        focus = ImageProcessing.ImageFocus(template);
                        Logging.LogFrameProcessed();
                        currTemplate = template;
                        FPS.Instance("processing").Update();
                        Monitor.Exit(preprocessingLock);
                    }
                    else
                    {
                        return;
                    }

                    string coarseLocation          = "", fineLocation = "";
                    float coarseProbability        = 0, fineProbability = 0;
                    bool hasUpdate                 = false;
                    string predictedCoarseLocation = "", predictedFineLocation = "";
                    if (touchDown && !trainingForm.Training && Monitor.TryEnter(recognitionLock))
                    {
                        try
                        {
                            if (Localization.Instance.GetNumTrainingExamples() > 0)
                            {
                                Dictionary <string, float> coarseProbabilities = new Dictionary <string, float>();
                                predictedCoarseLocation = Localization.Instance.PredictCoarseLocation(currTemplate, out coarseProbabilities);
                                //coarseLocationPredictions.Add(predictedCoarseLocation);
                                //while (coarseLocationPredictions.Count > numLocationPredictions) coarseLocationPredictions.Take();
                                coarseLocationProbabilities.Add(coarseProbabilities);
                                gestureCoarseLocationProbabilities.Add(coarseProbabilities);
                                while (coarseLocationProbabilities.Count > numLocationPredictions)
                                {
                                    coarseLocationProbabilities.Take();
                                }

                                //// compute the mode of the array
                                //var groups = coarseLocationPredictions.GroupBy(v => v);
                                //int maxCount = groups.Max(g => g.Count());
                                //coarseLocation = groups.First(g => g.Count() == maxCount).Key;

                                // sum up the probabilities
                                Dictionary <string, float> totalProbabilities = new Dictionary <string, float>();
                                foreach (Dictionary <string, float> probabilities in coarseLocationProbabilities)
                                {
                                    foreach (string key in probabilities.Keys)
                                    {
                                        if (!totalProbabilities.ContainsKey(key))
                                        {
                                            totalProbabilities[key] = 0;
                                        }
                                        totalProbabilities[key] += probabilities[key] / numLocationPredictions;
                                    }
                                }

                                float maxProb = 0;
                                foreach (string key in totalProbabilities.Keys)
                                {
                                    if (totalProbabilities[key] > maxProb)
                                    {
                                        maxProb           = totalProbabilities[key];
                                        coarseLocation    = key;
                                        coarseProbability = maxProb;
                                    }
                                }

                                coarseLocationPredictions.Add(coarseLocation);
                                gestureCoarseLocationPredictions.Add(coarseLocation);
                                while (coarseLocationPredictions.Count > numLocationPredictions)
                                {
                                    coarseLocationPredictions.Take();
                                }

                                if (!Properties.Settings.Default.CoarseOnly)
                                {
                                    bool foundFeatureMatch = false;
                                    Dictionary <string, float> fineProbabilities = new Dictionary <string, float>();
                                    predictedFineLocation = Localization.Instance.PredictFineLocation(currTemplate, out foundFeatureMatch, out fineProbabilities, true, false, false, coarseLocation);
                                    //fineLocationPredictions.Add(predictedFineLocation);
                                    //while (fineLocationPredictions.Count > numLocationPredictions) fineLocationPredictions.Take();
                                    fineLocationProbabilities.Add(fineProbabilities);
                                    gestureFineLocationProbabilities.Add(fineProbabilities);
                                    while (fineLocationProbabilities.Count > numLocationPredictions)
                                    {
                                        fineLocationProbabilities.Take();
                                    }

                                    // compute the mode of the array
                                    //var groups = fineLocationPredictions.GroupBy(v => v);
                                    //int maxCount = groups.Max(g => g.Count());
                                    //fineLocation = groups.First(g => g.Count() == maxCount).Key;

                                    // sum up the probabilities
                                    totalProbabilities = new Dictionary <string, float>();
                                    //foreach (Dictionary<string, float> probabilities in fineLocationProbabilities)
                                    for (int fineIndex = 0; fineIndex < fineLocationProbabilities.Count; fineIndex++)
                                    {
                                        Dictionary <string, float> probabilities = fineLocationProbabilities.ToArray()[fineIndex];

                                        // make sure that the fine prediction matches the classes for the coarse prediction
                                        if (coarseLocationPredictions.ToArray()[fineIndex] == coarseLocation)
                                        {
                                            foreach (string key in probabilities.Keys)
                                            {
                                                if (!totalProbabilities.ContainsKey(key))
                                                {
                                                    totalProbabilities[key] = 0;
                                                }
                                                totalProbabilities[key] += probabilities[key] / numLocationPredictions;
                                            }
                                        }
                                    }

                                    maxProb = 0;
                                    foreach (string key in totalProbabilities.Keys)
                                    {
                                        if (totalProbabilities[key] > maxProb)
                                        {
                                            maxProb         = totalProbabilities[key];
                                            fineLocation    = key;
                                            fineProbability = maxProb;
                                        }
                                    }
                                }

                                Logging.LogLocationEvent(predictedCoarseLocation + " " + predictedFineLocation, coarseLocation + " " + fineLocation);

                                gestureFocusWeights.Add(focus);

                                FPS.Instance("matching").Update();
                                hasUpdate = true;
                            }

                            if (autoTrainLocation && (coarseLocation != coarseLocationToTrain || fineLocation != fineLocationToTrain) && Monitor.TryEnter(trainingLock))
                            {
                                trainingForm.Training     = true;
                                ImageTemplate newTemplate = CopyTemplate(currTemplate);
                                Invoke(new MethodInvoker(delegate { TrainingLabel.Visible = true; }));
                                if (Properties.Settings.Default.EnableSoundEffects)
                                {
                                    captureSound.Play(); Logging.LogAudioEvent("capture", false);
                                }
                                AddTemplate(newTemplate);
                                Logging.LogTrainingEvent("Added template: " + newTemplate["coarse"] + " " + newTemplate["fine"]);
                                Thread.Sleep(100);
                                //if (Properties.Settings.Default.EnableSoundEffects) { beepSound.Play(); Logging.LogAudioEvent("beep", false); }
                                trainingForm.Training = false;
                                Invoke(new MethodInvoker(delegate { TrainingLabel.Visible = false; }));
                                Monitor.Exit(trainingLock);
                                return;
                            }

                            if ((DateTime.Now - touchStart).TotalMilliseconds > Properties.Settings.Default.HoverTimeThreshold)
                            {
                                hovering = true;
                                //if (hoverCoarseLocation == null || coarseLocation == hoverCoarseLocation) // make sure we have the same coarse location, to help prevent jumping around
                                {
                                    hoverCoarseLocation = coarseLocation;
                                    if (hoverFineLocation == null || fineLocation != hoverFineLocation) // make sure we haven't reported the fine location already
                                    {
                                        hoverFineLocation = fineLocation;
                                        Debug.WriteLine(hoverCoarseLocation + " " + hoverFineLocation);
                                        Invoke(new MethodInvoker(delegate { GesturePredictionLabel.Text = "Hover"; }));
                                        if (Properties.Settings.Default.EnableSpeechOutput)
                                        {
                                            if (Properties.Settings.Default.EnableApplicationDemos)
                                            {
                                                string actionResult = GestureActionMap.PerformAction("Hover", coarseLocation, fineLocation, Properties.Settings.Default.GestureMode, Properties.Settings.Default.FixedApplicationResponses);
                                                if (actionResult != null && actionResult.Length > 0)
                                                {
                                                    speech.SpeakAsyncCancelAll();
                                                    speech.SelectVoice(MenuVoice);
                                                    speech.SpeakAsync(actionResult);
                                                    Logging.LogAudioEvent(actionResult);
                                                }
                                            }
                                            else
                                            {
                                                speech.SpeakAsyncCancelAll();
                                                speech.SelectVoice(MenuVoice);
                                                speech.SpeakAsync("Hover " + coarseLocation + " " + fineLocation);
                                                Logging.LogAudioEvent("Hover " + coarseLocation + " " + fineLocation);
                                            }
                                        }
                                    }
                                }
                            }
                        }
                        finally
                        {
                            Monitor.Exit(recognitionLock);
                        }
                    }

                    //LBP.GetInstance(frame.Image.Size).GetHistogram(frame);
                    Invoke(new MethodInvoker(delegate
                    {
                        Display.Image = frame.Image.Bitmap;
                        if (hasUpdate)
                        {
                            CoarsePredictionLabel.Text  = coarseLocation;
                            CoarseProbabilityLabel.Text = " (response = " + (coarseProbability * 100).ToString("0.0") + ")";
                            //Debug.WriteLine(coarseLocation);
                            FinePredictionLabel.Text  = fineLocation;
                            FineProbabilityLabel.Text = " (response = " + (fineProbability * 100).ToString("0.0") + ")";
                            //Debug.WriteLine(fineLocation);
                        }
                        //else if(!touchDown)
                        //{
                        //    CoarsePredictionLabel.Text = "";
                        //    CoarseProbabilityLabel.Text = "";
                        //    FinePredictionLabel.Text = "";
                        //    FineProbabilityLabel.Text = "";
                        //}
                        //focus = (int)(focus / 100) * 100;
                        Text = FPS.Camera.Average.ToString("0") + " fps camera / " + (Sensors.Instance.IsConnected ? FPS.Sensors.Average.ToString("0") + " fps sensors / " + FPS.Instance("processing").Average.ToString("0") + " fps processing / " + FPS.Instance("matching").Average.ToString("0") + " fps matching" : "Waiting for Sensors") /*+ " / focus = " + focus.ToString("0")*/;
                    }));
                }
                catch { }
            });
        }