Пример #1
0
        /// <summary>
        /// <para>Unscented transform parameters optimization procedure.</para>
        /// <para>The OptimizationMethod param determines the optimization method:</para>
        /// <para>- OptimizationMethod.RandomShoot - parameters are randomly sampled and the best sample is chosen as optimal;
        /// <para>- OptimizationMethod.NelderMeed - parameters are optimized with non-gradient Nelder-Meed method.</para>
        /// <para>The UTOptimizationType type param determines the relation between the optimized variable and the unscented tranform params (see UTParams and its constructors for details). </para>
        /// <para>- If type is UTOptimizationType.ImplicitAlpha, then the optimized variable is saclar [alpha0];</para>
        /// <para>- If type is UTOptimizationType.ImplicitAlphaBetaKappa, then optimized variable is a vector [alpha, beta, kappa];</para>
        /// <para>- If type is UTOptimizationType.Explicit, then then optimized variable is a vector [lambda, wm0, wc0, wi]. ///TODO it is not correct to define the parameters of the unsctnted transform arbitraty, they have to be interdependent, so that the mean and cov would be transformed correctly.</para>
        /// </summary>
        /// <param name="method">Unscented transform parameters optimization method</param>
        /// <param name="type">Unscented transform parameters definition type</param>
        /// <param name="Phi1">State transformation: a nonlinear function which determines the dynamics: x_{t+1} = Phi_1(x_t) + Phi_2(x_t) W_t</param>
        /// <param name="Phi2">Noise multiplicator in the dynamics equation: x_{t+1} = Phi(x_t) + W_t</param>
        /// <param name="Psi1">Observations transformation: a nonlinear function which determines the relation between the state and the observations: y_t = Psi_1(x_t) + Psi_2(x_t) Nu_t</param>
        /// <param name="Psi2">Noise multiplicator in the observations equation: y_t = Psi_1(x_t) + Psi_2(x_t) Nu_t</param>
        /// <param name="Mw">Mean of the noise in the dynamics equation </param>
        /// <param name="Rw">Covariance matrix of the state disturbances</param>
        /// <param name="Mnu">Mean of the noise in the obseration equation </param>
        /// <param name="Rnu">Convariance matrix of the observation noise</param>
        /// <param name="Crit">Criterion: a function which determines the quality of the unscented Kalman filter. Depends on the sample covariance of the estimation error on the last step: val = Crit(Cov(X_T-Xhat_T,X_T-Xhat_T))  </param>
        /// <param name="T">The upper bound of the observation interval</param>
        /// <param name="models">Discrete vector model samples</param>
        /// <param name="xhat0">Initial condition</param>
        /// <param name="DX0Hat">Initial condition covariance</param>
        /// <param name="outputFolder">The results are saved to this folder in file "UT_optimization_{type}.txt"</param>
        static (double, UTParams, UTParams) UTParmsOptimize(OptimizationMethod method, UTDefinitionType type,
                                                            Func <int, Vector <double>, Vector <double> > Phi1,
                                                            Func <int, Vector <double>, Matrix <double> > Phi2,
                                                            Func <int, Vector <double>, Vector <double> > Psi1,
                                                            Func <int, Vector <double>, Matrix <double> > Psi2,
                                                            Vector <double> Mw,
                                                            Matrix <double> Rw,
                                                            Vector <double> Mnu,
                                                            Matrix <double> Rnu,
                                                            Func <Matrix <double>, double> Crit,
                                                            int T,
                                                            DiscreteVectorModel[] models,
                                                            Vector <double> xhat0,
                                                            Matrix <double> DX0Hat,
                                                            string outputFolder)
        {
            (int n, Vector <double> lowerBound, Vector <double> upperBound, Vector <double> initialGuess, string filename) = DefineOptimizationParameters(type, xhat0, string.IsNullOrWhiteSpace(outputFolder) ? null : Path.Combine(outputFolder, "UT_optimization_{type}.txt"));
            double          min    = double.MaxValue;
            Vector <double> argmin = Exts.Stack(initialGuess, initialGuess);

            switch (method)
            {
            case OptimizationMethod.RandomShoot:
                var OptimumRandom = RandomOptimizer.Minimize((x) => CalculateSampleCriterion(Phi1, Phi2, Psi1, Psi2, Mw, Rw, Mnu, Rnu, Crit, x, T, models, xhat0, DX0Hat), Exts.Stack(lowerBound, lowerBound), Exts.Stack(upperBound, upperBound), 100, 100, filename);
                min    = OptimumRandom.min;
                argmin = OptimumRandom.argmin;
                break;

            case OptimizationMethod.NelderMeed:
                NelderMeadSimplex optimizer = new NelderMeadSimplex(1e-3, 100);
                var objective = ObjectiveFunction.Value((x) => CalculateSampleCriterion(Phi1, Phi2, Psi1, Psi2, Mw, Rw, Mnu, Rnu, Crit, x, T, models, xhat0, DX0Hat));
                try
                {
                    var optimumNM = optimizer.FindMinimum(objective, Exts.Stack(initialGuess, initialGuess));
                    min    = optimumNM.FunctionInfoAtMinimum.Value;
                    argmin = optimumNM.MinimizingPoint;
                }
                catch (Exception e)
                {
                    Console.WriteLine($"Optimizer faild, using the initail guess ({e.Message})");
                    argmin = Exts.Stack(initialGuess, initialGuess);
                }
                break;

            default:     // no optimization by default
                break;
            }
            return(min, new UTParams(xhat0.Count, argmin.Take(n).ToArray()), new UTParams(xhat0.Count, argmin.Skip(n).Take(n).ToArray()));
        }
Пример #2
0
        static void Run(Options o, string[] args)
        {
            if (string.IsNullOrWhiteSpace(o.ScriptsFolder))
            {
                o.ScriptsFolder = "..\\..\\..\\OutputScripts\\";
            }

            Directory.CreateDirectory(o.OutputFolder);
            using (System.IO.StreamWriter outputfile = new System.IO.StreamWriter(Path.Combine(o.OutputFolder, "parameters.txt"), true))
            {
                outputfile.WriteLine($"{DateTime.Now}\t{string.Join(" ", args)}");
                outputfile.Close();
            }

            // original continuous model
            // x_t = x_0 + \int_0^t Phi_1(x_t) dt + \int_0^t Phi_2(x_t) dW_t

            // discrete model:
            // x_{t+1} = Phi_1(x_t) + Phi_2(x_t) W_t

            //observations
            // y_t = Psi_1(x_t) + Psi_2(x_t) Nu_t

            #region 3d model Ienkaran Arasaratnam, Simon Haykin, and Tom R. Hurd
            //mpdel params
            //double sigma1 = Math.Sqrt(0.2);
            //double sigma2 = 7.0 * 1e-3;
            //double sigma_r = 50;
            //double sigma_th = 0.1;
            //double sigma_ph = 0.1;

            // starting point
            //Vector<double> mEta = Exts.Vector(1000, 0, 2650, 150, 200, 0, 1.0);
            //Matrix<double> dEta = Exts.Diag(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0);
            //RandomVector<Normal> NormalEta = new RandomVector<Normal>(mEta, dEta);
            //Func<Vector<double>> X0;
            ////X0 = () => NormalEta.Sample();
            //X0 = () => mEta;

            // dynamics
            //Func<Vector<double>, Vector<double>> Phi1 = (x) => Exts.Vector(x[1], -x[6] * x[3], x[3], x[6] * x[1], x[5], 0, 0);
            //Func<Matrix<double>> Phi2 = () => Exts.Diag(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0);

            //Vector<double> mW = Exts.Vector(0, 0, 0, 0, 0, 0, 0);
            //Matrix<double> dW = Exts.Diag(1e1, Math.Pow(sigma1, 2), 1e1, Math.Pow(sigma1, 2), 1e1, Math.Pow(sigma1, 2), Math.Pow(sigma2, 2));
            //RandomVector<Normal> NormalW = new RandomVector<Normal>(mW, dW);
            //Func<Vector<double>> W;
            //W = () => NormalW.Sample();

            // observations
            //Func<Vector<double>, Vector<double>> Psi1 = (x) => Utils.cart2sphere(Exts.Vector(x[0], x[2], x[4]));
            //Func<Matrix<double>> Psi2 = () => Exts.Diag(1.0, 1.0, 1.0);
            //Vector<double> mNu = Exts.Vector(0, 0, 0);
            //Matrix<double> dNu = Exts.Diag(Math.Pow(sigma_r, 2), Math.Pow(sigma_th, 2), Math.Pow(sigma_ph, 2));

            ////Vector<double> X_R2 = Exts.Vector(0, 0);
            ////Vector<double> mNu = Exts.Vector(0, 0, 0, 0);
            ////Matrix<double> dNu = Exts.Diag(Math.Pow(0.1 * Math.PI / 180, 2), Math.Pow(50, 2), Math.Pow(0.1 * Math.PI / 180, 2), Math.Pow(50, 2));
            ////Func<double, Vector<double>, Vector<double>> Psi1 = (s, x) => Exts.Stack(Utils.cart2pol(Exts.Vector(x[0], x[1]) - X_R1), Utils.cart2pol(Exts.Vector(x[0], x[1]) - X_R2));
            ////Func<double, Vector<double>, Matrix<double>> Psi2 = (s, x) => Exts.Diag(1.0, 1.0, 1.0, 1.0);

            //RandomVector<Normal> NormalNu = new RandomVector<Normal>(mNu, dNu);
            //Func<Vector<double>> Nu;
            //Nu = () => NormalNu.Sample();

            //double h_state = 0.01;
            //double h_obs = 0.01;
            //double T = 1.0 + h_state / 2;

            #endregion


            #region 2d model with acceleration

            // model params
            double Alpha_n = o.alpha; // 0.05;
            double Beta_n  = o.beta;  //1.0;
            double Gamma_n = o.gamma; //0.5;

            // starting point
            Vector <double>         mEta        = Exts.Vector(0, 25000, 400, 10 * Math.PI / 180, Gamma_n / Alpha_n);
            Matrix <double>         dEta        = Exts.Diag(Math.Pow(o.DX0, 2), Math.Pow(o.DX0, 2), Math.Pow(115, 2), Math.Pow(15 * Math.PI / 180, 2), Math.Pow(Beta_n, 2) / 2 / Alpha_n);
            RandomVector <Normal>   NormalEta   = new RandomVector <Normal>(mEta, dEta);
            ContinuousUniform       UniformEtaV = new ContinuousUniform(200, 600);
            Func <Vector <double> > X0;
            X0 = () =>
            {
                var x = NormalEta.Sample();
                x[2] = UniformEtaV.Sample();
                return(x);
            };

            // dynamics
            Func <Vector <double>, Vector <double> > Phi1 = (x) => Exts.Vector(x[2] * Math.Cos(x[3]), x[2] * Math.Sin(x[3]), 0, x[4] / x[2], -Alpha_n * x[4] + Gamma_n);
            Func <Matrix <double> > Phi2 = () => Exts.Diag(0, 0, 0, 0, 1.0);

            Vector <double>         mW      = Exts.Vector(0, 0, 0, 0, 0);
            Matrix <double>         dW      = Exts.Diag(0, 0, 0, 0, Math.Pow(Beta_n, 2));
            Normal                  NormalW = new Normal(mW[4], Math.Sqrt(dW[4, 4]));
            Func <Vector <double> > W;
            W = () => Exts.Vector(0, 0, 0, 0, NormalW.Sample());

            // observations
            Vector <double> X_R1 = Exts.Vector(-10000, 10000);   // first radar location
            Vector <double> X_R2 = Exts.Vector(0, 0);            // second radar location

            Func <Vector <double>, Vector <double> > Psi1 = (x) => Exts.Stack(Utils.cart2pol(Exts.Vector(x[0], x[1]) - X_R1), Utils.cart2pol(Exts.Vector(x[0], x[1]) - X_R2));
            Func <Matrix <double> > Psi2 = () => Exts.Diag(1.0, 1.0, 1.0, 1.0);

            Vector <double>         mNu      = Exts.Vector(0, 0, 0, 0);
            Matrix <double>         dNu      = Exts.Diag(Math.Pow(0.1 * Math.PI / 180, 2), Math.Pow(50, 2), Math.Pow(0.1 * Math.PI / 180, 2), Math.Pow(50, 2));
            RandomVector <Normal>   NormalNu = new RandomVector <Normal>(mNu, dNu);
            Func <Vector <double> > Nu;
            Nu = () => NormalNu.Sample();



            //discretization
            double h_state = o.h_state; //0.01;
            double h_obs   = o.h_obs;   //1.0;
            double T       = o.T + h_state / 2;

            Func <int, Vector <double>, Vector <double> > Phi1_discr = (i, x) =>
            {
                Vector <double> xx = x;
                for (double s = h_state; s < h_obs + h_state / 2; s += h_state)
                {
                    xx += h_state * Phi1(xx);
                }
                return(xx);
            };
            Func <int, Vector <double>, Matrix <double> > Phi2_discr = (i, x) => Math.Sqrt(h_obs) * Phi2();
            Func <int, Vector <double>, Vector <double> > Psi1_discr = (i, x) => Psi1(x);
            Func <int, Vector <double>, Matrix <double> > Psi2_discr = (i, x) => Psi2();

            // derivatives for the Extended Kalman Filter
            Func <Vector <double>, Matrix <double> > dPhi = (x) => Matrix <double> .Build.Dense(5, 5, new double[5 * 5] {
                0, 0, 0, 0, 0,
                0, 0, 0, 0, 0,
                Math.Cos(x[3]), Math.Sin(x[3]), 0, -x[4] / Math.Pow(x[2], 2), 0,
                -x[2] * Math.Sin(x[3]), x[2] * Math.Cos(x[3]), 0, 0, 0,
                0, 0, 0, 1.0 / x[2], -Alpha_n
            }); // Column-major order

            Func <Vector <double>, Matrix <double> > dPsi = (x) =>
            {
                var x1   = x - X_R1.Stack(Exts.Vector(0, 0, 0));
                var r1r1 = x1[0] * x1[0] + x1[1] * x1[1];
                var r1   = Math.Sqrt(r1r1);
                var x2   = x - X_R2.Stack(Exts.Vector(0, 0, 0));
                var r2r2 = x2[0] * x2[0] + x2[1] * x2[1];
                var r2   = Math.Sqrt(r2r2);
                return(Matrix <double> .Build.Dense(4, 5, new double[5 * 4] {
                    -x1[1] / r1r1, x1[0] / r1, -x2[1] / r2r2, x2[0] / r2,
                    x1[0] / r1r1, x1[1] / r1, x2[0] / r2r2, x2[1] / r2,
                    0, 0, 0, 0,
                    0, 0, 0, 0,
                    0, 0, 0, 0
                })); // Column-major order
            };
            Func <int, Vector <double>, Matrix <double>, (Vector <double>, Matrix <double>)> Ricatti = (i, x, P) =>
            {
                Vector <double> xx = x;
                Matrix <double> PP = P;
                for (double s = h_state; s < h_obs + h_state / 2; s += h_state)
                {
                    PP += h_state * (dPhi(xx) * PP + PP * dPhi(xx).Transpose() + Phi2() * dW * Phi2().Transpose());
                    xx += h_state * (Phi1(xx) + Phi2() * mW);
                }
                return(xx, PP);
            };

            //trivial estimate
            Func <int, Vector <double>, Vector <double>, Matrix <double>, (Vector <double>, Matrix <double>)> DummyEstimate = (i, y, x, P) =>
            {
                Vector <double> xx = x;
                Matrix <double> PP = P;
                for (double s = h_state; s < h_obs + h_state / 2; s += h_state)
                {
                    PP += h_state * (dPhi(xx) * PP + PP * dPhi(xx).Transpose() + Phi2() * dW * Phi2().Transpose());
                    xx += h_state * (Phi1(xx) + Phi2() * mW);
                }
                return((0.5 * (Utils.pol2cart(Exts.Vector(y[0], y[1])) + X_R1 + Utils.pol2cart(Exts.Vector(y[2], y[3])) + X_R2)).Stack(Exts.Vector(xx[2], xx[3], xx[4])), PP);
            };

            #endregion

            int N = (int)(T / h_obs);

            Func <DiscreteVectorModel> ModelGenerator = () =>
            {
                DiscreteVectorModel model = null;

                int             n                 = 0;
                double          h_tolerance       = h_state / 2.0;
                double          t_nextobservation = h_obs;
                Vector <double> State             = X0();
                Vector <double> Obs;

                model = new DiscreteVectorModel(Phi1_discr, Phi2_discr, Psi1_discr, Psi2_discr, (i) => W(), (i) => Nu(), X0(), true);
                //for (double s = 0; s < T; s += h_obs)
                //{
                //    model.Step();
                //}
                for (double s = h_state; s < T; s += h_state)
                {
                    if (s > 0)
                    {
                        State = State + h_state * Phi1(State) + Math.Sqrt(h_state) * Phi2() * W();
                    }
                    if (Math.Abs(s - t_nextobservation) < h_tolerance)
                    {
                        Obs = Psi1(State) + Psi2() * Nu();
                        t_nextobservation += h_obs;

                        n++;
                        model.Trajectory.Add(n, new Vector <double>[] { State, Obs });
                    }
                }
                return(model);
            };

            // filter params file names
            string CMNFFileName = Path.Combine(o.OutputFolder, "cmnf.params");
            if (!string.IsNullOrWhiteSpace(o.CMNFFileName))
            {
                CMNFFileName = o.CMNFFileName;
            }
            string BCMNFFileName = Path.Combine(o.OutputFolder, "bcmnf.params");
            if (!string.IsNullOrWhiteSpace(o.BCMNFFileName))
            {
                BCMNFFileName = o.BCMNFFileName;
            }
            string UKFFileName = Path.Combine(o.OutputFolder, "ukf.params");
            if (!string.IsNullOrWhiteSpace(o.UKFFileName))
            {
                UKFFileName = o.UKFFileName;
            }
            string UKFOptStepwiseNMFileName = Path.Combine(o.OutputFolder, "ukfoptstepwiseNM.params");
            if (!string.IsNullOrWhiteSpace(o.UKFStepwiseNelderMeadFileName))
            {
                UKFOptStepwiseNMFileName = o.UKFStepwiseNelderMeadFileName;
            }
            string UKFOptIntegralNMFileName = Path.Combine(o.OutputFolder, "ukfoptintegralNM.params");
            if (!string.IsNullOrWhiteSpace(o.UKFIntegralNelderMeadFileName))
            {
                UKFOptIntegralNMFileName = o.UKFIntegralNelderMeadFileName;
            }
            string UKFOptStepwiseRandFileName = Path.Combine(o.OutputFolder, "ukfoptstepwiserand.params");
            if (!string.IsNullOrWhiteSpace(o.UKFStepwiseRandomShootFileName))
            {
                UKFOptStepwiseRandFileName = o.UKFStepwiseRandomShootFileName;
            }
            string UKFOptIntegralRandFileName = Path.Combine(o.OutputFolder, "ukfoptintegralrand.params");
            if (!string.IsNullOrWhiteSpace(o.UKFIntegralRandomShootFileName))
            {
                UKFOptIntegralRandFileName = o.UKFIntegralRandomShootFileName;
            }

            // filters
            List <(FilterType, string)> filters = new List <(FilterType, string)>();
            if (o.CMNF)
            {
                filters.Add((FilterType.CMNF, CMNFFileName));
            }
            if (o.BCMNF)
            {
                filters.Add((FilterType.BCMNF, BCMNFFileName));
            }
            if (o.MCMNF)
            {
                filters.Add((FilterType.MCMNF, string.Empty));
            }
            if (o.UKF)
            {
                filters.Add((FilterType.UKFNoOptimization, UKFFileName));
            }
            if (o.UKFStepwiseNelderMead)
            {
                filters.Add((FilterType.UKFStepwise, UKFOptStepwiseNMFileName));
            }
            if (o.UKFIntegralNelderMead)
            {
                filters.Add((FilterType.UKFIntegral, UKFOptIntegralNMFileName));
            }
            if (o.UKFStepwiseRandomShoot)
            {
                filters.Add((FilterType.UKFStepwiseRandomShoot, UKFOptStepwiseRandFileName));
            }
            if (o.UKFIntegralRandomShoot)
            {
                filters.Add((FilterType.UKFIntegralRandomShoot, UKFOptIntegralRandFileName));
            }
            if (o.EKF)
            {
                filters.Add((FilterType.EKF, string.Empty));
            }
            if (o.Dummy)
            {
                filters.Add((FilterType.Dummy, string.Empty));
            }


            // test environment
            TestEnvironmentVector testEnv = new TestEnvironmentVector()
            {
                TestName     = "Target tracking",
                TestFileName = "TargetTracking",
                Phi1         = Phi1_discr,
                Phi2         = Phi2_discr,
                Psi1         = Psi1_discr,
                Psi2         = Psi2_discr,
                dPhi         = (i, x) => dPhi(x),
                dPsi         = (i, x) => dPsi(x),
                Xi           = (i, x) => Phi1_discr(i, x) + Phi2_discr(i, x) * mW,
                //Zeta = (i, x, y, k) => (y - Psi1_discr(i, x) - Psi2_discr(i, x) * mNu).Stack(Utils.pol2cart(Exts.Vector(y[0], y[1]))+X_R1).Stack(Utils.pol2cart(Exts.Vector(y[2], y[3]))+X_R2),
                Zeta  = (i, x, y, k) => (y - Psi1_discr(i, x) - Psi2_discr(i, x) * mNu),
                Alpha = (i, x) => Phi1_discr(i, x) + Phi2_discr(i, x) * mW,
                Gamma = (i, x, y) => (y).Stack(Utils.pol2cart(Exts.Vector(y[0], y[1])) + X_R1).Stack(Utils.pol2cart(Exts.Vector(y[2], y[3])) + X_R2),
                //Gamma = (i, x, y) => y - Psi1_discr(i, x) - Psi2_discr(i, x) * mNu,
                nMCMNF         = o.MCMNFTrainCount,
                W              = (i) => W(),
                Nu             = (i) => Nu(),
                DW             = dW,
                DNu            = dNu,
                X0             = () => X0(),
                X0Hat          = mEta,
                DX0Hat         = dEta,
                Predict        = Ricatti,
                DummyEstimate  = DummyEstimate,
                ModelGenerator = ModelGenerator
            };

            if (o.Bulk)
            {
                testEnv.GenerateBundleSamples(o.T, o.TrainCount, o.OutputFolder);
            }
            else
            {
                testEnv.Initialize(o.T, o.TrainCount, o.OutputFolder, filters, o.Save, o.Load);
                if (o.Sift)
                {
                    testEnv.Sifter = (x) => Math.Sqrt(x[0] * x[0] + x[1] * x[1]) > o.SiftBound;
                }
                if (o.Aggregate)
                {
                    testEnv.Aggregate(o.OutputFolder, o.OutputFolder, !o.NoBin, !o.NoText);
                }
                if (!o.Skip)
                {
                    if (o.SamplesCount == 0)
                    {
                        testEnv.GenerateBundles(o.BundleCount, o.TestCount, o.OutputFolder, o.Parallel, o.ParallelismDegree, !o.NoBin, !o.NoText);
                        if (!o.NoPython)
                        {
                            testEnv.RunScript(Path.Combine(o.ScriptsFolder, "estimate_statistics.py"), o.OutputFolder);
                        }
                    }
                    else
                    {
                        if (o.SamplesCount == 1)
                        {
                            testEnv.GenerateOne(o.OutputFolder);
                            if (!o.NoPython)
                            {
                                testEnv.RunScript(Path.Combine(o.ScriptsFolder, "estimate_sample.py"), o.OutputFolder);
                                testEnv.RunScript(Path.Combine(o.ScriptsFolder, "trajectory.py"), o.OutputFolder);
                            }
                        }
                        else
                        {
                            for (int i = 0; i < o.SamplesCount; i++)
                            {
                                testEnv.GenerateOne(o.OutputFolder, i);
                            }
                        }
                    }
                }
            }
        }
Пример #3
0
        /// <summary>
        /// <para>Unscented transform parameters stepwize optimization procedure.</para>
        /// <para>The OptimizationMethod param determines the optimization method:</para>
        /// <para>- OptimizationMethod.RandomShoot - parameters are randomly sampled and the best sample is chosen as optimal;
        /// <para>- OptimizationMethod.NelderMeed - parameters are optimized with non-gradient Nelder-Meed method.</para>
        /// <para>The UTOptimizationType type param determines the relation between the optimized variable and the unscented tranform params (see UTParams and its constructors for details). </para>
        /// <para>- If type is UTOptimizationType.ImplicitAlpha, then the optimized variable is saclar [alpha0];</para>
        /// <para>- If type is UTOptimizationType.ImplicitAlphaBetaKappa, then optimized variable is a vector [alpha, beta, kappa];</para>
        /// <para>- If type is UTOptimizationType.Explicit, then then optimized variable is a vector [lambda, wm0, wc0, wi]. ///TODO it is not correct to define the parameters of the unsctnted transform arbitraty, they have to be interdependent, so that the mean and cov would be transformed correctly.</para>
        /// </summary>
        /// <param name="method">Unscented transform parameters optimization method</param>
        /// <param name="type">Unscented transform parameters definition type</param>
        /// <param name="Phi1">State transformation: a nonlinear function which determines the dynamics: x_{t+1} = Phi_1(x_t) + Phi_2(x_t) W_t</param>
        /// <param name="Phi2">Noise multiplicator in the dynamics equation: x_{t+1} = Phi(x_t) + W_t</param>
        /// <param name="Psi1">Observations transformation: a nonlinear function which determines the relation between the state and the observations: y_t = Psi_1(x_t) + Psi_2(x_t) Nu_t</param>
        /// <param name="Psi2">Noise multiplicator in the observations equation: y_t = Psi_1(x_t) + Psi_2(x_t) Nu_t</param>
        /// <param name="Mw">Mean of the noise in the dynamics equation </param>
        /// <param name="Rw">Covariance matrix of the state disturbances</param>
        /// <param name="Mnu">Mean of the noise in the obseration equation </param>
        /// <param name="Rnu">Convariance matrix of the observation noise</param>
        /// <param name="Crit">Criterion: a function which determines the quality of the unscented Kalman filter. Depends on the sample covariance of the estimation error on the last step: val = Crit(Cov(X_T-Xhat_T,X_T-Xhat_T))  </param>
        /// <param name="T">The upper bound of the observation interval</param>
        /// <param name="models">Discrete vector model samples</param>
        /// <param name="xhat0">Initial condition</param>
        /// <param name="DX0Hat">Initial condition covariance</param>
        /// <param name="outputFolder">The results are saved to this folder in file "UT_optimization_{type}.txt"</param>
        static (double, UTParams[], UTParams[]) UTParmsOptimizeStepwise(OptimizationMethod method, UTDefinitionType type,
                                                                        Func <int, Vector <double>, Vector <double> > Phi1,
                                                                        Func <int, Vector <double>, Matrix <double> > Phi2,
                                                                        Func <int, Vector <double>, Vector <double> > Psi1,
                                                                        Func <int, Vector <double>, Matrix <double> > Psi2,
                                                                        Vector <double> Mw,
                                                                        Matrix <double> Rw,
                                                                        Vector <double> Mnu,
                                                                        Matrix <double> Rnu,
                                                                        Func <Matrix <double>, double> Crit,
                                                                        int T,
                                                                        DiscreteVectorModel[] models,
                                                                        Vector <double> xhat0,
                                                                        Matrix <double> DX0Hat,
                                                                        string outputFolder)
        {
            UTParams[] pForecast = new UTParams[T];
            UTParams[] pCorrect  = new UTParams[T];

            (int n, Vector <double> lowerBound, Vector <double> upperBound, Vector <double> initialGuess, string filename) = DefineOptimizationParameters(type, xhat0, string.IsNullOrWhiteSpace(outputFolder) ? null : Path.Combine(outputFolder, "UT_stepwise_ptimization_{type}.txt"));

            Vector <double>[] xHatU = models.Select(x => xhat0).ToArray();
            Matrix <double>[] PHatU = models.Select(x => DX0Hat).ToArray();

            double min = double.MaxValue;

            Console.WriteLine($"UKF estimate parameters start");
            DateTime start = DateTime.Now;

            for (int t = 1; t < T; t++)
            //Parallel.For(0, T, new ParallelOptions() { MaxDegreeOfParallelism = System.Environment.ProcessorCount }, t =>
            {
                DateTime startiteration = DateTime.Now;
                min = double.MaxValue;
                Vector <double> argmin = initialGuess;

                switch (method)
                {
                case OptimizationMethod.RandomShoot:
                    var OptimumRandom = RandomOptimizer.Minimize((x) => CalculateSampleStepwiseCriterion(Phi1, Phi2, Psi1, Psi2, Mw, Rw, Mnu, Rnu, Crit, x, t, models, xHatU, PHatU), Exts.Stack(lowerBound, lowerBound), Exts.Stack(upperBound, upperBound), 100, 100, filename);
                    min    = OptimumRandom.min;
                    argmin = OptimumRandom.argmin;
                    break;

                case OptimizationMethod.NelderMeed:
                    NelderMeadSimplex optimizer = new NelderMeadSimplex(1e-3, 100);
                    var objective = ObjectiveFunction.Value((x) => CalculateSampleStepwiseCriterion(Phi1, Phi2, Psi1, Psi2, Mw, Rw, Mnu, Rnu, Crit, x, t, models, xHatU, PHatU));
                    try
                    {
                        var optimumNM = optimizer.FindMinimum(objective, Exts.Stack(initialGuess, initialGuess));
                        min    = optimumNM.FunctionInfoAtMinimum.Value;
                        argmin = optimumNM.MinimizingPoint;
                    }
                    catch (Exception e)
                    {
                        Console.WriteLine($"Optimizer faild, using the initail guess ({e.Message})");
                        argmin = Exts.Stack(initialGuess, initialGuess);
                    }
                    break;
                }
                pForecast[t] = new UTParams(xhat0.Count, argmin.Take(n).ToArray());
                pCorrect[t]  = new UTParams(xhat0.Count, argmin.Skip(n).Take(n).ToArray());
                for (int i = 0; i < models.Count(); i++)
                {
                    (xHatU[i], PHatU[i]) = Step(Phi1, Phi2, Psi1, Psi2, Mw, Rw, Mnu, Rnu, pForecast[t], pCorrect[t], t, models[i].Trajectory[t][1], xHatU[i], PHatU[i]);
                }
                Console.WriteLine($"UKF estimate parameters for t={t}, done in {(DateTime.Now - startiteration).ToString(@"hh\:mm\:ss\.fff")}");
            }
            //    });
            DateTime finish = DateTime.Now;

            Console.WriteLine($"UKF estimate parameters finished in {(finish - start).ToString(@"hh\:mm\:ss\.fff")}");
            return(min, pForecast, pCorrect);
        }
Пример #4
0
        static void Run(Options o, string[] args)
        {
            if (string.IsNullOrWhiteSpace(o.OutputFolder))
            {
                o.OutputFolder = Settings.Default.OutputFolder;
            }

            if (string.IsNullOrWhiteSpace(o.PlotsFolder))
            {
                o.PlotsFolder = Settings.Default.LatexFolder;
            }

            if (string.IsNullOrWhiteSpace(o.ScriptsFolder))
            {
                o.ScriptsFolder = Settings.Default.ScriptsFolder;
            }

            if (string.IsNullOrWhiteSpace(o.TemplatesFolder))
            {
                o.TemplatesFolder = Settings.Default.LatexFolder;
            }

            if (new[] { "sphere", "polar", "polartwo" }.Contains(o.Model))
            {
                #region sphere
                if (o.Model == "sphere")
                {
                    int             N = o.N;
                    Vector <double> mX = Exts.Vector(30, 40, 100); Matrix <double> KX = Exts.Diag(30 * 30, 30 * 30, 30 * 30);
                    Vector <double> mNu = Exts.Vector(0, 0, 0); Matrix <double> KNu = Exts.Diag(30 * 30, Math.Pow(5 * Math.PI / 180.0, 2.0), Math.Pow(5 * Math.PI / 180.0, 2.0));
                    Normal[]        NormalX = new Normal[3] {
                        new Normal(mX[0], Math.Sqrt(KX[0, 0])), new Normal(mX[1], Math.Sqrt(KX[1, 1])), new Normal(mX[2], Math.Sqrt(KX[2, 2]))
                    };
                    Normal[] NormalNu = new Normal[3] {
                        new Normal(mNu[0], Math.Sqrt(KNu[0, 0])), new Normal(mNu[1], Math.Sqrt(KNu[1, 1])), new Normal(mNu[2], Math.Sqrt(KNu[2, 2]))
                    };;

                    TestEnvironmentStatic testSphere = new TestEnvironmentStatic
                    {
                        Phi    = x => Utils.cart2sphere(x),
                        InvPhi = y => Utils.sphere2cart(y),
                        W      = () => Exts.Vector(NormalX[0].Sample(), NormalX[1].Sample(), NormalX[2].Sample()),
                        Nu     = () => Exts.Vector(NormalNu[0].Sample(), NormalNu[1].Sample(), NormalNu[2].Sample()),
                        MX     = mX,
                        KX     = KX,
                        KNu    = KNu
                    };

                    testSphere.Initialize(N, o.OutputFolder);
                    Vector <double> mErr;
                    Matrix <double> KErr;
                    Matrix <double> KErrTh;
                    Vector <double> mErr_inv;
                    Matrix <double> KErr_inv;
                    Matrix <double> KErrTh_inv;
                    Vector <double> mErr_lin;
                    Matrix <double> KErr_lin;
                    Matrix <double> KErrTh_lin;
                    Vector <double> mErr_UT;
                    Matrix <double> KErr_UT;
                    Matrix <double> KErrTh_UT;

                    string fileName_alldata = Path.Combine(o.OutputFolder, "test_sphere_alldata.txt");
                    testSphere.GenerateBundle(N, out mErr, out KErr, out KErrTh, out mErr_inv, out KErr_inv, out KErrTh_inv, out mErr_lin, out KErr_lin, out KErrTh_lin, out mErr_UT, out KErr_UT, out KErrTh_UT, fileName_alldata);


                    string fileName = Path.Combine(o.OutputFolder, "test_sphere.txt");
                    using (System.IO.StreamWriter outputfile = new System.IO.StreamWriter(fileName))
                    {
                        //outputfile.WriteLine($"P = {P}");
                        outputfile.WriteLine($"mErr = {mErr}");
                        outputfile.WriteLine($"KErr = {KErr}");
                        outputfile.WriteLine($"KErrTh = {KErrTh}");

                        //outputfile.WriteLine($"P_inv = {P_inv}");
                        outputfile.WriteLine($"mErr_inv = {mErr_inv}");
                        outputfile.WriteLine($"KErr_inv = {KErr_inv}");
                        outputfile.WriteLine($"KErrTh_inv = {KErrTh_inv}");

                        //outputfile.WriteLine($"P_lin = {P_lin}");
                        outputfile.WriteLine($"mErr_lin = {mErr_lin}");
                        outputfile.WriteLine($"KErr_lin = {KErr_lin}");
                        outputfile.WriteLine($"KErrTh_lin = {KErrTh_lin}");

                        //outputfile.WriteLine($"P_UT = {P_UT}");
                        outputfile.WriteLine($"mErr_UT = {mErr_UT}");
                        outputfile.WriteLine($"KErr_UT = {KErr_UT}");
                        outputfile.WriteLine($"KErrTh_UT = {KErrTh_UT}");

                        outputfile.Close();
                    }
                }
                #endregion

                #region polar
                if (o.Model == "polar")
                {
                    int N = o.N;

                    Vector <double> mX = Exts.Vector(300, 400); Matrix <double> KX = Exts.Diag(30 * 30, 30 * 30);
                    //Vector<double> mX = Exts.Vector(30000, 40000); Matrix<double> KX = Exts.Diag(100 * 100, 100 * 100);
                    //Vector<double> mX = Exts.Vector(30000, 40000); Matrix<double> KX = Exts.Diag(4500 * 4500, 4500 * 4500);
                    Vector <double> mNu = Exts.Vector(0, 0); Matrix <double> KNu = Exts.Diag(Math.Pow(5 * Math.PI / 180.0, 2.0), 30 * 30);
                    Normal[]        NormalX = new Normal[2] {
                        new Normal(mX[0], Math.Sqrt(KX[0, 0])), new Normal(mX[1], Math.Sqrt(KX[1, 1]))
                    };
                    Normal[] NormalNu = new Normal[2] {
                        new Normal(mNu[0], Math.Sqrt(KNu[0, 0])), new Normal(mNu[1], Math.Sqrt(KNu[1, 1]))
                    };;

                    //Console.WriteLine(mX.ToLine());

                    TestEnvironmentStatic testPolar = new TestEnvironmentStatic
                    {
                        Phi    = x => Utils.cart2pol(x),
                        InvPhi = y => Utils.pol2cart(y),
                        W      = () => Exts.Vector(NormalX[0].Sample(), NormalX[1].Sample()),
                        Nu     = () => Exts.Vector(NormalNu[0].Sample(), NormalNu[1].Sample()),
                        MX     = mX,
                        KX     = KX,
                        KNu    = KNu
                    };

                    testPolar.Initialize(N, o.OutputFolder);
                    Vector <double> mErr;
                    Matrix <double> KErr;
                    Matrix <double> KErrTh;
                    Vector <double> mErr_inv;
                    Matrix <double> KErr_inv;
                    Matrix <double> KErrTh_inv;
                    Vector <double> mErr_lin;
                    Matrix <double> KErr_lin;
                    Matrix <double> KErrTh_lin;
                    Vector <double> mErr_UT;
                    Matrix <double> KErr_UT;
                    Matrix <double> KErrTh_UT;

                    string fileName_alldata = Path.Combine(o.OutputFolder, "test_polar_alldata.txt");
                    testPolar.GenerateBundle(N, out mErr, out KErr, out KErrTh, out mErr_inv, out KErr_inv, out KErrTh_inv, out mErr_lin, out KErr_lin, out KErrTh_lin, out mErr_UT, out KErr_UT, out KErrTh_UT, fileName_alldata);


                    string fileName = Path.Combine(o.OutputFolder, "test_polar.txt");
                    using (System.IO.StreamWriter outputfile = new System.IO.StreamWriter(fileName))
                    {
                        //outputfile.WriteLine($"P = {P}");
                        outputfile.WriteLine($"mErr = {mErr}");
                        outputfile.WriteLine($"KErr = {KErr}");
                        outputfile.WriteLine($"KErrTh = {KErrTh}");

                        //outputfile.WriteLine($"P_inv = {P_inv}");
                        outputfile.WriteLine($"mErr_inv = {mErr_inv}");
                        outputfile.WriteLine($"KErr_inv = {KErr_inv}");
                        outputfile.WriteLine($"KErrTh_inv = {KErrTh_inv}");

                        //outputfile.WriteLine($"P_lin = {P_lin}");
                        outputfile.WriteLine($"mErr_lin = {mErr_lin}");
                        outputfile.WriteLine($"KErr_lin = {KErr_lin}");
                        outputfile.WriteLine($"KErrTh_lin = {KErrTh_lin}");

                        //outputfile.WriteLine($"P_UT = {P_UT}");
                        outputfile.WriteLine($"mErr_UT = {mErr_UT}");
                        outputfile.WriteLine($"KErr_UT = {KErr_UT}");
                        outputfile.WriteLine($"KErrTh_UT = {KErrTh_UT}");

                        outputfile.Close();
                    }
                }
                #endregion

                #region polartwo
                if (o.Model == "polartwo")
                {
                    int             N = o.N;
                    Vector <double> secondpoint = Exts.Vector(-10000, 10000);
                    Vector <double> mX = Exts.Vector(30000, 40000); Matrix <double> KX = Exts.Diag(2000 * 2000, 2000 * 2000);
                    Vector <double> mNu = Exts.Vector(0, 0, 0, 0);
                    Matrix <double> KNu = Exts.Diag(Math.Pow(0.1 * Math.PI / 180.0, 2.0),
                                                    50 * 50,
                                                    Math.Pow(0.1 * Math.PI / 180.0, 2.0),
                                                    50 * 50);
                    Normal[] NormalX = new Normal[2] {
                        new Normal(mX[0], Math.Sqrt(KX[0, 0])), new Normal(mX[1], Math.Sqrt(KX[1, 1]))
                    };
                    Normal[] NormalNu = new Normal[4] {
                        new Normal(mNu[0], Math.Sqrt(KNu[0, 0])),
                        new Normal(mNu[1], Math.Sqrt(KNu[1, 1])),
                        new Normal(mNu[2], Math.Sqrt(KNu[2, 2])),
                        new Normal(mNu[3], Math.Sqrt(KNu[3, 3]))
                    };

                    //Console.WriteLine(mX.ToLine());

                    TestEnvironmentStatic testPolar = new TestEnvironmentStatic
                    {
                        Phi    = x => Exts.Stack(Utils.cart2pol(x), Utils.cart2pol(x - secondpoint)),
                        InvPhi = y => Exts.Stack(Utils.pol2cart(Exts.Vector(y[0], y[1])), Utils.pol2cart(Exts.Vector(y[2], y[3])) + secondpoint),
                        W      = () => Exts.Vector(NormalX[0].Sample(), NormalX[1].Sample()),
                        Nu     = () => Exts.Vector(NormalNu[0].Sample(), NormalNu[1].Sample(), NormalNu[2].Sample(), NormalNu[3].Sample()),
                        //Nu = () => Exts.Vector(0,0,0,0),
                        MX  = mX,
                        KX  = KX,
                        KNu = KNu
                    };

                    testPolar.Initialize(N, o.OutputFolder);
                    Vector <double> mErr;
                    Matrix <double> KErr;
                    Matrix <double> KErrTh;
                    Vector <double> mErr_inv;
                    Matrix <double> KErr_inv;
                    Matrix <double> KErrTh_inv;
                    Vector <double> mErr_lin;
                    Matrix <double> KErr_lin;
                    Matrix <double> KErrTh_lin;
                    Vector <double> mErr_UT;
                    Matrix <double> KErr_UT;
                    Matrix <double> KErrTh_UT;

                    string fileName_alldata = Path.Combine(o.OutputFolder, "test_polartwo_alldata.txt");
                    testPolar.GenerateBundle(N, out mErr, out KErr, out KErrTh, out mErr_inv, out KErr_inv, out KErrTh_inv, out mErr_lin, out KErr_lin, out KErrTh_lin, out mErr_UT, out KErr_UT, out KErrTh_UT, fileName_alldata);


                    string fileName = Path.Combine(o.OutputFolder, "test_polartwo.txt");
                    using (System.IO.StreamWriter outputfile = new System.IO.StreamWriter(fileName))
                    {
                        //outputfile.WriteLine($"P = {P}");
                        outputfile.WriteLine($"mErr = {mErr}");
                        outputfile.WriteLine($"KErr = {KErr}");
                        outputfile.WriteLine($"KErrTh = {KErrTh}");

                        //outputfile.WriteLine($"P_inv = {P_inv}");
                        outputfile.WriteLine($"mErr_inv = {mErr_inv}");
                        outputfile.WriteLine($"KErr_inv = {KErr_inv}");
                        outputfile.WriteLine($"KErrTh_inv = {KErrTh_inv}");

                        //outputfile.WriteLine($"P_lin = {P_lin}");
                        outputfile.WriteLine($"mErr_lin = {mErr_lin}");
                        outputfile.WriteLine($"KErr_lin = {KErr_lin}");
                        outputfile.WriteLine($"KErrTh_lin = {KErrTh_lin}");

                        //outputfile.WriteLine($"P_UT = {P_UT}");
                        outputfile.WriteLine($"mErr_UT = {mErr_UT}");
                        outputfile.WriteLine($"KErr_UT = {KErr_UT}");
                        outputfile.WriteLine($"KErrTh_UT = {KErrTh_UT}");

                        outputfile.Close();
                    }
                }
                #endregion
            }
            else
            {
                TestEnvironmentVector testEnv = new TestEnvironmentVector();

                if (o.Model == "cubic")
                {
                    testEnv = new TestCubicSensorScalar(o.DW, o.DNu);
                }
                if (o.Model == "invprop-good")
                {
                    testEnv = new TestInverseProportionGoodScalar(o.Bound, o.DW, o.DNu);
                }
                if (o.Model == "invprop-bad")
                {
                    testEnv = new TestInverseProportionBadScalar(o.Bound, o.DW, o.DNu);
                }
                if (o.Model == "logreg-simple")
                {
                    testEnv = new TestLogisticModelScalar(o.Bound, o.DW, o.DNu);
                }
                if (o.Model == "logreg-zero")
                {
                    testEnv = new TestLogisticModelZeroScalar(o.Bound, o.DW, o.DNu);
                }
                if (o.Model == "logreg-uniform")
                {
                    testEnv = new TestLogisticModelUniformNoiseScalar();
                }
                if (o.Model == "samplereg")
                {
                    testEnv = new TestSampledRegression(o.DNu);
                }
                if (o.Model == "switchingobs")
                {
                    testEnv = new TestSwitchingObservations(o.DNu);
                }
                if (o.Model == "switchingobsident")
                {
                    switch (o.IdentNumber)
                    {
                    case 1: testEnv = new AnotherTestSwitchingObservationsIdentification(o.DNu); break;

                    case 2: testEnv = new YetAnotherTestSwitchingObservationsIdentification(o.DNu); break;

                    case 3: testEnv = new HopefullyTheLastTestSwitchingObservationsIdentification(o.DNu); break;

                    default: testEnv = new TestSwitchingObservationsIdentification(o.DNu); break;
                    }
                }
                if (o.Model == "simpleident")
                {
                    testEnv = new TestSimpleIdentification();
                }

                string CMNFFileName = Path.Combine(o.OutputFolder, "cmnf.params");
                if (!string.IsNullOrWhiteSpace(o.CMNFFileName))
                {
                    CMNFFileName = o.CMNFFileName;
                }
                string BCMNFFileName = Path.Combine(o.OutputFolder, "bcmnf.params");
                if (!string.IsNullOrWhiteSpace(o.BCMNFFileName))
                {
                    BCMNFFileName = o.BCMNFFileName;
                }

                string UKFFileName = Path.Combine(o.OutputFolder, "ukf.params");
                if (!string.IsNullOrWhiteSpace(o.UKFFileName))
                {
                    UKFFileName = o.UKFFileName;
                }
                string UKFOptStepwiseNMFileName = Path.Combine(o.OutputFolder, "ukfoptstepwiseNM.params");
                if (!string.IsNullOrWhiteSpace(o.UKFStepwiseNelderMeadFileName))
                {
                    UKFOptStepwiseNMFileName = o.UKFStepwiseNelderMeadFileName;
                }
                string UKFOptIntegralNMFileName = Path.Combine(o.OutputFolder, "ukfoptintegralNM.params");
                if (!string.IsNullOrWhiteSpace(o.UKFIntegralNelderMeadFileName))
                {
                    UKFOptIntegralNMFileName = o.UKFIntegralNelderMeadFileName;
                }
                string UKFOptStepwiseRandFileName = Path.Combine(o.OutputFolder, "ukfoptstepwiserand.params");
                if (!string.IsNullOrWhiteSpace(o.UKFStepwiseRandomShootFileName))
                {
                    UKFOptStepwiseRandFileName = o.UKFStepwiseRandomShootFileName;
                }
                string UKFOptIntegralRandFileName = Path.Combine(o.OutputFolder, "ukfoptintegralrand.params");
                if (!string.IsNullOrWhiteSpace(o.UKFIntegralRandomShootFileName))
                {
                    UKFOptIntegralRandFileName = o.UKFIntegralRandomShootFileName;
                }

                List <(FilterType, string)> filters = new List <(FilterType, string)>();
                if (o.CMNF)
                {
                    filters.Add((FilterType.CMNF, CMNFFileName));
                }
                if (o.BCMNF)
                {
                    testEnv.Alpha = testEnv.Xi;
                    testEnv.Gamma = (t, x, y) => y;
                    filters.Add((FilterType.BCMNF, BCMNFFileName));
                }
                if (o.MCMNF)
                {
                    testEnv.nMCMNF = o.MCMNFTrainCount;
                    filters.Add((FilterType.MCMNF, string.Empty));
                }
                if (o.UKF)
                {
                    filters.Add((FilterType.UKFNoOptimization, UKFFileName));
                }
                if (o.UKFStepwiseNelderMead)
                {
                    filters.Add((FilterType.UKFStepwise, UKFOptStepwiseNMFileName));
                }
                if (o.UKFIntegralNelderMead)
                {
                    filters.Add((FilterType.UKFIntegral, UKFOptIntegralNMFileName));
                }
                if (o.UKFStepwiseRandomShoot)
                {
                    filters.Add((FilterType.UKFStepwiseRandomShoot, UKFOptStepwiseRandFileName));
                }
                if (o.UKFIntegralRandomShoot)
                {
                    filters.Add((FilterType.UKFIntegralRandomShoot, UKFOptIntegralRandFileName));
                }
                if (o.EKF)
                {
                    filters.Add((FilterType.EKF, string.Empty));
                }
                if (o.Dummy)
                {
                    filters.Add((FilterType.Dummy, string.Empty));
                }

                using (System.IO.StreamWriter outputfile = new System.IO.StreamWriter(Path.Combine(o.OutputFolder, "parameters.txt"), true))
                {
                    outputfile.WriteLine($"{DateTime.Now}\t{string.Join(" ", args)}");
                    outputfile.Close();
                }

                if (o.Bulk)
                {
                    testEnv.GenerateBundleSamples(o.T, o.TrainCount, o.OutputFolder);
                }
                else
                {
                    testEnv.Initialize(o.T, o.TrainCount, o.OutputFolder, filters, o.Save, o.Load);

                    if (o.Aggregate)
                    {
                        testEnv.Aggregate(o.OutputFolder, o.OutputFolder, !o.NoBin, !o.NoText);
                    }
                    if (!o.Skip)
                    {
                        testEnv.GenerateBundles(o.BundleCount, o.TestCount, o.OutputFolder, o.Parallel, o.ParallelismDegree, !o.NoBin, !o.NoText);
                        //if (o.BundleCount > 1)
                        //    testEnv.GenerateBundles(o.BundleCount, o.TestCount, o.OutputFolder, o.Parallel, o.ParallelismDegree);
                        //else
                        //    testEnv.GenerateBundle(o.TestCount, o.OutputFolder);

                        if (o.SamplesCount == 1)
                        {
                            testEnv.GenerateOne(o.OutputFolder);
                        }
                        else
                        {
                            for (int i = 0; i < o.SamplesCount; i++)
                            {
                                testEnv.GenerateOne(o.OutputFolder, i);
                            }
                        }
                        //testEnv.GenerateReport(o.TemplatesFolder, o.PlotsFolder);
                    }
                    if (!o.NoPython)
                    {
                        testEnv.ProcessResults(o.OutputFolder, o.ScriptsFolder, o.PlotsFolder);
                    }
                }
            }
        }