Пример #1
0
 public void SetColumnArrayWrongRank()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   double[] b = {1,2,3};
   a.SetColumn(1,b);
 }
Пример #2
0
 public void SetColumnArray()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   double[] b = {1,2};
   a.SetColumn(0,b);
   Assert.AreEqual(b[0], a[0,0]);
   Assert.AreEqual(b[1], a[1,0]);
 }
Пример #3
0
 public void SetColumnArrayOutOfRange()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   double[] b = {1,2};
   a.SetColumn(2,b);
 }
Пример #4
0
 public void SetColumnWrongRank()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   DoubleVector b = new DoubleVector(3);
   a.SetColumn(1,b);
 }
Пример #5
0
 public void SetColumnOutOfRange()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   DoubleVector b = new DoubleVector(2);
   a.SetColumn(2,b);
 }
Пример #6
0
 public void SetColumn()
 {
   DoubleMatrix a = new DoubleMatrix(2,2);
   DoubleVector b = new DoubleVector(2);
   b[0] = 1;
   b[1] = 2;
   a.SetColumn(0,b);
   Assert.AreEqual(b[0], a[0,0]);
   Assert.AreEqual(b[1], a[1,0]);
 }
Пример #7
0
    /// <summary>
    /// Solve a square Toeplitz system with a right-side matrix.
    /// </summary>
    /// <param name="Y">The right-side matrix</param>
    /// <returns>The solution matrix.</returns>
    /// <exception cref="ArgumentNullException">
    /// Parameter <B>Y</B> is a null reference.
    /// </exception>
    /// <exception cref="RankException">
    /// The number of rows in <B>Y</B> is not equal to the number of rows in the Toeplitz matrix.
    /// </exception>
    /// <exception cref="SingularMatrixException">
    /// The Toeplitz matrix or one of the the leading sub-matrices is singular.
    /// </exception>
    /// <remarks>
    /// This member solves the linear system <B>TX</B> = <B>Y</B>, where <B>T</B> is
    /// a square Toeplitz matrix, <B>X</B> is the unknown solution matrix
    /// and <B>Y</B> is a known matrix.
    /// <para>
    /// The class implicitly decomposes the inverse Toeplitz matrix into a <b>UDL</b> factorisation
    /// using the Levinson algorithm, before calculating the solution vector.
    /// </para>
    /// </remarks>
    public DoubleMatrix Solve(IROMatrix Y)
    {
      DoubleMatrix X;
      double Inner;
      double[] a, b, x, y;
      int i, j, l;

      // check parameters
      if (Y == null)
      {
        throw new System.ArgumentNullException("Y");
      }
      else if (m_Order != Y.Columns)
      {
        throw new RankException("The numer of rows in Y is not equal to the number of rows in the Toeplitz matrix.");
      }

      Compute();

      if (m_IsSingular == true)
      {
        throw new SingularMatrixException("One of the leading sub-matrices is singular.");
      }

      // allocate memory for solution
      X = new DoubleMatrix(m_Order, Y.Rows);
      x = new double[m_Order];

      for (l = 0; l < Y.Rows; l++)
      {

        // get right-side column
        y = DoubleVector.GetColumnAsArray(Y,l);

        // solve left-side column
        for (i = 0; i < m_Order; i++)
        {
          a = m_LowerTriangle[i];
          b = m_UpperTriangle[i];

          Inner = y[i];
          for (j = 0; j < i; j++)
          {
            Inner += a[j] * y[j];
          }
          Inner *= m_Diagonal[i];
  
          x[i] = Inner;
          for (j = 0; j < i; j++)
          {
            x[j] += Inner * b[j];
          }
        }

        // insert left-side column into the matrix
        X.SetColumn(l, x);
      }

      return X;
    }
Пример #8
0
    /// <summary>
    /// Solve a square Toeplitz system with a right-side matrix.
    /// </summary>
    /// <param name="col">The left-most column of the Toeplitz matrix.</param>
    /// <param name="row">The top-most row of the Toeplitz matrix.</param>
    /// <param name="Y">The right-side matrix of the system.</param>
    /// <returns>The solution matrix.</returns>
    /// <exception cref="ArgumentNullException">
    /// <EM>col</EM> is a null reference,
    /// <para>or</para>
    /// <para><EM>row</EM> is a null reference,</para>
    /// <para>or</para>
    /// <para><EM>Y</EM> is a null reference.</para>
    /// </exception>
    /// <exception cref="RankException">
    /// The length of <EM>col</EM> is 0,
    /// <para>or</para>
    /// <para>the lengths of <EM>col</EM> and <EM>row</EM> are not equal,</para>
    /// <para>or</para>
    /// <para>the number of rows in <EM>Y</EM> does not the length of <EM>col</EM> and <EM>row</EM>.</para>
    /// </exception>
    /// <exception cref="SingularMatrixException">
    /// The Toeplitz matrix or one of the the leading sub-matrices is singular.
    /// </exception>
    /// <exception cref="ArithmeticException">
    /// The values of the first element of <EM>col</EM> and <EM>row</EM> are not equal.
    /// </exception>
    /// <remarks>
    /// This method solves the linear system <B>AX</B> = <B>Y</B>. Where
    /// <B>T</B> is a square Toeplitz matrix, <B>X</B> is an unknown
    /// matrix and <B>Y</B> is a known matrix.
    /// <para>
    /// The classic Levinson algorithm is used to solve the system. The algorithm
    /// assumes that all the leading sub-matrices of the Toeplitz matrix are
    /// non-singular. When a sub-matrix is near singular, accuracy will
    /// be degraded. This member requires approximately <B>N</B> squared
    /// FLOPS to calculate a solution, where <B>N</B> is the matrix order.
    /// </para>
    /// <para>
    /// This static method has minimal storage requirements as it combines
    /// the <b>UDL</b> decomposition with the calculation of the solution vector
    /// in a single algorithm.
    /// </para>
    /// </remarks>
    public static DoubleMatrix Solve(IROVector col, IROVector row, IROMatrix Y)
    {
      // check parameters
      if (col == null)
      {
        throw new System.ArgumentNullException("col");
      }
      else if (col.Length == 0)
      {
        throw new RankException("The length of col is zero.");
      }
      else if (row == null)
      {
        throw new System.ArgumentNullException("row");
      }
      else if (col.Length != row.Length)
      {
        throw new RankException("The lengths of col and row are not equal.");
      }
      else if (col[0] != row[0])
      {
        throw new ArithmeticException("The values of the first element of col and row are not equal.");
      }
      else if (Y == null)
      {
        throw new System.ArgumentNullException("Y");
      }
      else if (col.Length != Y.Columns)
      {
        throw new RankException("The numer of rows in Y does not match the length of col and row.");
      }

      // check if leading diagonal is zero
      if (col[0] == 0.0)
      {
        throw new SingularMatrixException("One of the leading sub-matrices is singular.");
      }

      // decompose matrix
      int order = col.Length;
      double[] A = new double[order];
      double[] B = new double[order];
      double[] Z = new double[order];
      DoubleMatrix X = new DoubleMatrix(order);
      double Q, S, Ke, Kr, e;
      double Inner;
      int i, j, l;

      // setup the zero order solution
      A[0] = 1.0;
      B[0] = 1.0;
      e = 1.0 / col[0];
      X.SetRow(0, e * DoubleVector.GetRow(Y,0));

      for (i = 1; i < order; i++)
      {
        // calculate inner products
        Q = 0.0;
        for ( j = 0, l = 1; j < i; j++, l++)
        {
          Q += col[l] * A[j];
        }

        S = 0.0;
        for ( j = 0, l = 1; j < i; j++, l++)
        {
          S += row[l] * B[j];
        }

        // reflection coefficients
        Kr = -S * e;
        Ke = -Q * e;

        // update lower triangle (in temporary storage)
        Z[0] = 0.0;
        Array.Copy(A, 0, Z, 1, i);
        for (j = 0, l = i - 1; j < i; j++, l--)
        {
          Z[j] += Ke * B[l];
        }

        // update upper triangle
        for (j = i; j > 0; j--)
        {
          B[j] = B[j-1];
        }

        B[0] = 0.0;
        for (j = 0, l = i - 1; j < i; j++, l--)
        {
          B[j] += Kr * A[l];
        }

        // copy from temporary storage to lower triangle
        Array.Copy(Z, 0, A, 0, i + 1);

        // check for singular sub-matrix)
        if (Ke * Kr == 1.0)
        {
          throw new SingularMatrixException("One of the leading sub-matrices is singular.");
        }
      
        // update diagonal
        e = e / (1.0 - Ke * Kr);

        for (l = 0; l < Y.Rows; l++)
        {
          DoubleVector W = X.GetColumn(l);
          DoubleVector M = DoubleVector.GetColumn(Y,l);

          Inner = M[i];
          for (j = 0; j < i; j++)
          {
            Inner += A[j] * M[j];
          }
          Inner *= e;

          W[i] = Inner;
          for (j = 0; j < i; j++)
          {
            W[j] += Inner * B[j];
          }

          X.SetColumn(l, W);
        }

      }

      return X;
    }