private static bool FindImplSlotInSimpleMap(EEType *pTgtType, EEType *pItfType, uint itfSlotNumber, ushort *pImplSlotNumber, bool actuallyCheckVariance) { Debug.Assert(pTgtType->HasDispatchMap, "Missing dispatch map"); EEType * pItfOpenGenericType = null; EETypeRef * pItfInstantiation = null; int itfArity = 0; GenericVariance *pItfVarianceInfo = null; bool fCheckVariance = false; bool fArrayCovariance = false; if (actuallyCheckVariance) { fCheckVariance = pItfType->HasGenericVariance; fArrayCovariance = pTgtType->IsArray; // Non-arrays can follow array variance rules iff // 1. They have one generic parameter // 2. That generic parameter is array covariant. // // This special case is to allow array enumerators to work if (!fArrayCovariance && pTgtType->HasGenericVariance) { int tgtEntryArity = (int)pTgtType->GenericArity; GenericVariance *pTgtVarianceInfo = pTgtType->GenericVariance; if ((tgtEntryArity == 1) && pTgtVarianceInfo[0] == GenericVariance.ArrayCovariant) { fArrayCovariance = true; } } // Arrays are covariant even though you can both get and set elements (type safety is maintained by // runtime type checks during set operations). This extends to generic interfaces implemented on those // arrays. We handle this by forcing all generic interfaces on arrays to behave as though they were // covariant (over their one type parameter corresponding to the array element type). if (fArrayCovariance && pItfType->IsGeneric) { fCheckVariance = true; } // If there is no variance checking, there is no operation to perform. (The non-variance check loop // has already completed) if (!fCheckVariance) { return(false); } } DispatchMap *pMap = pTgtType->DispatchMap; DispatchMap.DispatchMapEntry *i = (*pMap)[0]; DispatchMap.DispatchMapEntry *iEnd = (*pMap)[(int)pMap->NumEntries]; for (; i != iEnd; ++i) { if (i->_usInterfaceMethodSlot == itfSlotNumber) { EEType *pCurEntryType = pTgtType->InterfaceMap[i->_usInterfaceIndex].InterfaceType; if (pCurEntryType->IsCloned) { pCurEntryType = pCurEntryType->CanonicalEEType; } if (pCurEntryType == pItfType) { *pImplSlotNumber = i->_usImplMethodSlot; return(true); } else if (fCheckVariance && ((fArrayCovariance && pCurEntryType->IsGeneric) || pCurEntryType->HasGenericVariance)) { // Interface types don't match exactly but both the target interface and the current interface // in the map are marked as being generic with at least one co- or contra- variant type // parameter. So we might still have a compatible match. // Retrieve the unified generic instance for the callsite interface if we haven't already (we // lazily get this then cache the result since the lookup isn't necessarily cheap). if (pItfOpenGenericType == null) { pItfOpenGenericType = pItfType->GenericDefinition; itfArity = (int)pItfType->GenericArity; pItfInstantiation = pItfType->GenericArguments; pItfVarianceInfo = pItfType->GenericVariance; } // Retrieve the unified generic instance for the interface we're looking at in the map. EEType *pCurEntryGenericType = pCurEntryType->GenericDefinition; // If the generic types aren't the same then the types aren't compatible. if (pItfOpenGenericType != pCurEntryGenericType) { continue; } // Grab instantiation details for the candidate interface. EETypeRef *pCurEntryInstantiation = pCurEntryType->GenericArguments; // The types represent different instantiations of the same generic type. The // arity of both had better be the same. Debug.Assert(itfArity == (int)pCurEntryType->GenericArity, "arity mismatch betweeen generic instantiations"); if (TypeCast.TypeParametersAreCompatible(itfArity, pCurEntryInstantiation, pItfInstantiation, pItfVarianceInfo, fArrayCovariance, null)) { *pImplSlotNumber = i->_usImplMethodSlot; return(true); } } } } return(false); }
private static void CreateEETypeWorker(EEType *pTemplateEEType, UInt32 hashCodeOfNewType, int arity, bool requireVtableSlotMapping, TypeBuilderState state) { bool successful = false; IntPtr eeTypePtrPlusGCDesc = IntPtr.Zero; IntPtr dynamicDispatchMapPtr = IntPtr.Zero; DynamicModule *dynamicModulePtr = null; try { Debug.Assert((pTemplateEEType != null) || (state.TypeBeingBuilt as MetadataType != null)); // In some situations involving arrays we can find as a template a dynamically generated type. // In that case, the correct template would be the template used to create the dynamic type in the first // place. if (pTemplateEEType != null && pTemplateEEType->IsDynamicType) { pTemplateEEType = pTemplateEEType->DynamicTemplateType; } ModuleInfo moduleInfo = TypeLoaderEnvironment.GetModuleInfoForType(state.TypeBeingBuilt); dynamicModulePtr = moduleInfo.DynamicModulePtr; Debug.Assert(dynamicModulePtr != null); bool requiresDynamicDispatchMap = requireVtableSlotMapping && (pTemplateEEType != null) && pTemplateEEType->HasDispatchMap; uint valueTypeFieldPaddingEncoded = 0; int baseSize = 0; bool isValueType; bool hasFinalizer; bool isNullable; bool isArray; bool isGeneric; ushort componentSize = 0; ushort flags; ushort runtimeInterfacesLength = 0; bool isGenericEETypeDef = false; if (state.RuntimeInterfaces != null) { runtimeInterfacesLength = checked ((ushort)state.RuntimeInterfaces.Length); } if (pTemplateEEType != null) { valueTypeFieldPaddingEncoded = EEType.ComputeValueTypeFieldPaddingFieldValue( pTemplateEEType->ValueTypeFieldPadding, (uint)pTemplateEEType->FieldAlignmentRequirement); baseSize = (int)pTemplateEEType->BaseSize; isValueType = pTemplateEEType->IsValueType; hasFinalizer = pTemplateEEType->IsFinalizable; isNullable = pTemplateEEType->IsNullable; componentSize = pTemplateEEType->ComponentSize; flags = pTemplateEEType->Flags; isArray = pTemplateEEType->IsArray; isGeneric = pTemplateEEType->IsGeneric; Debug.Assert(pTemplateEEType->NumInterfaces == runtimeInterfacesLength); } else if (state.TypeBeingBuilt.IsGenericDefinition) { flags = (ushort)EETypeKind.GenericTypeDefEEType; isValueType = state.TypeBeingBuilt.IsValueType; if (isValueType) { flags |= (ushort)EETypeFlags.ValueTypeFlag; } if (state.TypeBeingBuilt.IsInterface) { flags |= (ushort)EETypeFlags.IsInterfaceFlag; } hasFinalizer = false; isArray = false; isNullable = false; isGeneric = false; isGenericEETypeDef = true; componentSize = checked ((ushort)state.TypeBeingBuilt.Instantiation.Length); baseSize = 0; } else { isValueType = state.TypeBeingBuilt.IsValueType; hasFinalizer = state.TypeBeingBuilt.HasFinalizer; isNullable = state.TypeBeingBuilt.GetTypeDefinition().IsNullable; flags = EETypeBuilderHelpers.ComputeFlags(state.TypeBeingBuilt); isArray = false; isGeneric = state.TypeBeingBuilt.HasInstantiation; if (state.TypeBeingBuilt.HasVariance) { state.GenericVarianceFlags = new int[state.TypeBeingBuilt.Instantiation.Length]; int i = 0; foreach (GenericParameterDesc gpd in state.TypeBeingBuilt.GetTypeDefinition().Instantiation) { state.GenericVarianceFlags[i] = (int)gpd.Variance; i++; } Debug.Assert(i == state.GenericVarianceFlags.Length); } } // TODO! Change to if template is Universal or non-Existent if (state.TypeSize.HasValue) { baseSize = state.TypeSize.Value; int baseSizeBeforeAlignment = baseSize; baseSize = MemoryHelpers.AlignUp(baseSize, IntPtr.Size); if (isValueType) { // Compute the valuetype padding size based on size before adding the object type pointer field to the size uint cbValueTypeFieldPadding = (uint)(baseSize - baseSizeBeforeAlignment); // Add Object type pointer field to base size baseSize += IntPtr.Size; valueTypeFieldPaddingEncoded = (uint)EEType.ComputeValueTypeFieldPaddingFieldValue(cbValueTypeFieldPadding, (uint)state.FieldAlignment.Value); } // Minimum base size is 3 pointers, and requires us to bump the size of an empty class type if (baseSize <= IntPtr.Size) { // ValueTypes should already have had their size bumped up by the normal type layout process Debug.Assert(!isValueType); baseSize += IntPtr.Size; } // Add sync block skew baseSize += IntPtr.Size; // Minimum basesize is 3 pointers Debug.Assert(baseSize >= (IntPtr.Size * 3)); } // Optional fields encoding int cbOptionalFieldsSize; OptionalFieldsRuntimeBuilder optionalFields; { optionalFields = new OptionalFieldsRuntimeBuilder(pTemplateEEType != null ? pTemplateEEType->OptionalFieldsPtr : null); UInt32 rareFlags = optionalFields.GetFieldValue(EETypeOptionalFieldTag.RareFlags, 0); rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeFlag; // Set the IsDynamicTypeFlag rareFlags &= ~(uint)EETypeRareFlags.NullableTypeViaIATFlag; // Remove the NullableTypeViaIATFlag flag rareFlags &= ~(uint)EETypeRareFlags.HasSealedVTableEntriesFlag; // Remove the HasSealedVTableEntriesFlag // we'll set IsDynamicTypeWithSealedVTableEntriesFlag instead // Set the IsDynamicTypeWithSealedVTableEntriesFlag if needed if (state.NumSealedVTableEntries > 0) { rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithSealedVTableEntriesFlag; } if (requiresDynamicDispatchMap) { rareFlags |= (uint)EETypeRareFlags.HasDynamicallyAllocatedDispatchMapFlag; } if (state.NonGcDataSize != 0) { rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithNonGcStatics; } if (state.GcDataSize != 0) { rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithGcStatics; } if (state.ThreadDataSize != 0) { rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithThreadStatics; } #if ARM if (state.FieldAlignment == 8) { rareFlags |= (uint)EETypeRareFlags.RequiresAlign8Flag; } else { rareFlags &= ~(uint)EETypeRareFlags.RequiresAlign8Flag; } if (state.IsHFA) { rareFlags |= (uint)EETypeRareFlags.IsHFAFlag; } else { rareFlags &= ~(uint)EETypeRareFlags.IsHFAFlag; } #endif if (state.HasStaticConstructor) { rareFlags |= (uint)EETypeRareFlags.HasCctorFlag; } else { rareFlags &= ~(uint)EETypeRareFlags.HasCctorFlag; } rareFlags |= (uint)EETypeRareFlags.HasDynamicModuleFlag; optionalFields.SetFieldValue(EETypeOptionalFieldTag.RareFlags, rareFlags); // Dispatch map is fetched either from template type, or from the dynamically allocated DispatchMap field optionalFields.ClearField(EETypeOptionalFieldTag.DispatchMap); optionalFields.ClearField(EETypeOptionalFieldTag.ValueTypeFieldPadding); if (valueTypeFieldPaddingEncoded != 0) { optionalFields.SetFieldValue(EETypeOptionalFieldTag.ValueTypeFieldPadding, valueTypeFieldPaddingEncoded); } // Compute size of optional fields encoding cbOptionalFieldsSize = optionalFields.Encode(); Debug.Assert(cbOptionalFieldsSize > 0); } // Note: The number of vtable slots on the EEType to create is not necessary equal to the number of // vtable slots on the template type for universal generics (see ComputeVTableLayout) ushort numVtableSlots = state.NumVTableSlots; // Compute the EEType size and allocate it EEType *pEEType; { // In order to get the size of the EEType to allocate we need the following information // 1) The number of VTable slots (from the TypeBuilderState) // 2) The number of Interfaces (from the template) // 3) Whether or not there is a finalizer (from the template) // 4) Optional fields size // 5) Whether or not the type is nullable (from the template) // 6) Whether or not the type has sealed virtuals (from the TypeBuilderState) int cbEEType = (int)EEType.GetSizeofEEType( numVtableSlots, runtimeInterfacesLength, hasFinalizer, true, isNullable, state.NumSealedVTableEntries > 0, isGeneric, state.NonGcDataSize != 0, state.GcDataSize != 0, state.ThreadDataSize != 0); // Dynamic types have an extra pointer-sized field that contains a pointer to their template type cbEEType += IntPtr.Size; // Check if we need another pointer sized field for a dynamic DispatchMap cbEEType += (requiresDynamicDispatchMap ? IntPtr.Size : 0); // Add another pointer sized field for a DynamicModule cbEEType += IntPtr.Size; int cbGCDesc = GetInstanceGCDescSize(state, pTemplateEEType, isValueType, isArray); int cbGCDescAligned = MemoryHelpers.AlignUp(cbGCDesc, IntPtr.Size); // Allocate enough space for the EEType + gcDescSize eeTypePtrPlusGCDesc = MemoryHelpers.AllocateMemory(cbGCDescAligned + cbEEType + cbOptionalFieldsSize); // Get the EEType pointer, and the template EEType pointer pEEType = (EEType *)(eeTypePtrPlusGCDesc + cbGCDescAligned); state.HalfBakedRuntimeTypeHandle = pEEType->ToRuntimeTypeHandle(); // Set basic EEType fields pEEType->ComponentSize = componentSize; pEEType->Flags = flags; pEEType->BaseSize = (uint)baseSize; pEEType->NumVtableSlots = numVtableSlots; pEEType->NumInterfaces = runtimeInterfacesLength; pEEType->HashCode = hashCodeOfNewType; // Write the GCDesc bool isSzArray = isArray ? state.ArrayRank < 1 : false; int arrayRank = isArray ? state.ArrayRank.Value : 0; CreateInstanceGCDesc(state, pTemplateEEType, pEEType, baseSize, cbGCDesc, isValueType, isArray, isSzArray, arrayRank); Debug.Assert(pEEType->HasGCPointers == (cbGCDesc != 0)); #if GENERICS_FORCE_USG if (state.NonUniversalTemplateType != null) { Debug.Assert(state.NonUniversalInstanceGCDescSize == cbGCDesc, "Non-universal instance GCDesc size not matching with universal GCDesc size!"); Debug.Assert(cbGCDesc == 0 || pEEType->HasGCPointers); // The TestGCDescsForEquality helper will compare 2 GCDescs for equality, 4 bytes at a time (GCDesc contents treated as integers), and will read the // GCDesc data in *reverse* order for instance GCDescs (subtracts 4 from the pointer values at each iteration). // - For the first GCDesc, we use (pEEType - 4) to point to the first 4-byte integer directly preceeding the EEType // - For the second GCDesc, given that the state.NonUniversalInstanceGCDesc already points to the first byte preceeding the template EEType, we // subtract 3 to point to the first 4-byte integer directly preceeding the template EEtype TestGCDescsForEquality(new IntPtr((byte *)pEEType - 4), state.NonUniversalInstanceGCDesc - 3, cbGCDesc, true); } #endif // Copy the encoded optional fields buffer to the newly allocated memory, and update the OptionalFields field on the EEType // It is important to set the optional fields first on the newly created EEType, because all other 'setters' // will assert that the type is dynamic, just to make sure we are not making any changes to statically compiled types pEEType->OptionalFieldsPtr = (byte *)pEEType + cbEEType; optionalFields.WriteToEEType(pEEType, cbOptionalFieldsSize); #if CORERT pEEType->PointerToTypeManager = PermanentAllocatedMemoryBlobs.GetPointerToIntPtr(moduleInfo.Handle); #endif pEEType->DynamicModule = dynamicModulePtr; // Copy VTable entries from template type int numSlotsFilled = 0; IntPtr *pVtable = (IntPtr *)((byte *)pEEType + sizeof(EEType)); if (pTemplateEEType != null) { IntPtr *pTemplateVtable = (IntPtr *)((byte *)pTemplateEEType + sizeof(EEType)); for (int i = 0; i < pTemplateEEType->NumVtableSlots; i++) { int vtableSlotInDynamicType = requireVtableSlotMapping ? state.VTableSlotsMapping.GetVTableSlotInTargetType(i) : i; if (vtableSlotInDynamicType != -1) { Debug.Assert(vtableSlotInDynamicType < numVtableSlots); IntPtr dictionaryPtrValue; if (requireVtableSlotMapping && state.VTableSlotsMapping.IsDictionarySlot(i, out dictionaryPtrValue)) { // This must be the dictionary pointer value of one of the base types of the // current universal generic type being constructed. pVtable[vtableSlotInDynamicType] = dictionaryPtrValue; // Assert that the current template vtable slot is also a NULL value since all // universal generic template types have NULL dictionary slot values in their vtables Debug.Assert(pTemplateVtable[i] == IntPtr.Zero); } else { pVtable[vtableSlotInDynamicType] = pTemplateVtable[i]; } numSlotsFilled++; } } } else if (isGenericEETypeDef) { // If creating a Generic Type Definition Debug.Assert(pEEType->NumVtableSlots == 0); } else { #if SUPPORTS_NATIVE_METADATA_TYPE_LOADING // Dynamically loaded type // Fill the vtable with vtable resolution thunks in all slots except for // the dictionary slots, which should be filled with dictionary pointers if those // dictionaries are already published. TypeDesc nextTypeToExamineForDictionarySlot = state.TypeBeingBuilt; TypeDesc typeWithDictionary; int nextDictionarySlot = GetMostDerivedDictionarySlot(ref nextTypeToExamineForDictionarySlot, out typeWithDictionary); for (int iSlot = pEEType->NumVtableSlots - 1; iSlot >= 0; iSlot--) { bool isDictionary = iSlot == nextDictionarySlot; if (!isDictionary) { pVtable[iSlot] = LazyVTableResolver.GetThunkForSlot(iSlot); } else { if (typeWithDictionary.RetrieveRuntimeTypeHandleIfPossible()) { pVtable[iSlot] = typeWithDictionary.RuntimeTypeHandle.GetDictionary(); } nextDictionarySlot = GetMostDerivedDictionarySlot(ref nextTypeToExamineForDictionarySlot, out typeWithDictionary); } numSlotsFilled++; } #else Environment.FailFast("Template type loader is null, but metadata based type loader is not in use"); #endif } Debug.Assert(numSlotsFilled == numVtableSlots); // Copy Pointer to finalizer method from the template type if (hasFinalizer) { if (pTemplateEEType != null) { pEEType->FinalizerCode = pTemplateEEType->FinalizerCode; } else { #if SUPPORTS_NATIVE_METADATA_TYPE_LOADING pEEType->FinalizerCode = LazyVTableResolver.GetFinalizerThunk(); #else Environment.FailFast("Template type loader is null, but metadata based type loader is not in use"); #endif } } } // Copy the sealed vtable entries if they exist on the template type if (state.NumSealedVTableEntries > 0) { state.HalfBakedSealedVTable = MemoryHelpers.AllocateMemory((int)state.NumSealedVTableEntries * IntPtr.Size); UInt32 cbSealedVirtualSlotsTypeOffset = pEEType->GetFieldOffset(EETypeField.ETF_SealedVirtualSlots); *((IntPtr *)((byte *)pEEType + cbSealedVirtualSlotsTypeOffset)) = state.HalfBakedSealedVTable; for (UInt16 i = 0; i < state.NumSealedVTableEntries; i++) { IntPtr value = pTemplateEEType->GetSealedVirtualSlot(i); pEEType->SetSealedVirtualSlot(value, i); } } // Create a new DispatchMap for the type if (requiresDynamicDispatchMap) { DispatchMap *pTemplateDispatchMap = (DispatchMap *)RuntimeAugments.GetDispatchMapForType(pTemplateEEType->ToRuntimeTypeHandle()); dynamicDispatchMapPtr = MemoryHelpers.AllocateMemory(pTemplateDispatchMap->Size); UInt32 cbDynamicDispatchMapOffset = pEEType->GetFieldOffset(EETypeField.ETF_DynamicDispatchMap); *((IntPtr *)((byte *)pEEType + cbDynamicDispatchMapOffset)) = dynamicDispatchMapPtr; DispatchMap *pDynamicDispatchMap = (DispatchMap *)dynamicDispatchMapPtr; pDynamicDispatchMap->NumEntries = pTemplateDispatchMap->NumEntries; for (int i = 0; i < pTemplateDispatchMap->NumEntries; i++) { DispatchMap.DispatchMapEntry *pTemplateEntry = (*pTemplateDispatchMap)[i]; DispatchMap.DispatchMapEntry *pDynamicEntry = (*pDynamicDispatchMap)[i]; pDynamicEntry->_usInterfaceIndex = pTemplateEntry->_usInterfaceIndex; pDynamicEntry->_usInterfaceMethodSlot = pTemplateEntry->_usInterfaceMethodSlot; if (pTemplateEntry->_usImplMethodSlot < pTemplateEEType->NumVtableSlots) { pDynamicEntry->_usImplMethodSlot = (ushort)state.VTableSlotsMapping.GetVTableSlotInTargetType(pTemplateEntry->_usImplMethodSlot); Debug.Assert(pDynamicEntry->_usImplMethodSlot < numVtableSlots); } else { // This is an entry in the sealed vtable. We need to adjust the slot number based on the number of vtable slots // in the dynamic EEType pDynamicEntry->_usImplMethodSlot = (ushort)(pTemplateEntry->_usImplMethodSlot - pTemplateEEType->NumVtableSlots + numVtableSlots); Debug.Assert(state.NumSealedVTableEntries > 0 && pDynamicEntry->_usImplMethodSlot >= numVtableSlots && (pDynamicEntry->_usImplMethodSlot - numVtableSlots) < state.NumSealedVTableEntries); } } } if (pTemplateEEType != null) { pEEType->DynamicTemplateType = pTemplateEEType; } else { // Use object as the template type for non-template based EETypes. This will // allow correct Module identification for types. if (state.TypeBeingBuilt.HasVariance) { // TODO! We need to have a variant EEType here if the type has variance, as the // CreateGenericInstanceDescForType requires it. However, this is a ridiculous api surface // When we remove GenericInstanceDescs from the product, get rid of this weird special // case pEEType->DynamicTemplateType = typeof(IEnumerable <int>).TypeHandle.ToEETypePtr(); } else { pEEType->DynamicTemplateType = typeof(object).TypeHandle.ToEETypePtr(); } } int nonGCStaticDataOffset = 0; if (!isArray && !isGenericEETypeDef) { nonGCStaticDataOffset = state.HasStaticConstructor ? -TypeBuilder.ClassConstructorOffset : 0; // create GC desc if (state.GcDataSize != 0 && state.GcStaticDesc == IntPtr.Zero) { int cbStaticGCDesc; state.GcStaticDesc = CreateStaticGCDesc(state.StaticGCLayout, out state.AllocatedStaticGCDesc, out cbStaticGCDesc); #if GENERICS_FORCE_USG TestGCDescsForEquality(state.GcStaticDesc, state.NonUniversalStaticGCDesc, cbStaticGCDesc, false); #endif } if (state.ThreadDataSize != 0 && state.ThreadStaticDesc == IntPtr.Zero) { int cbThreadStaticGCDesc; state.ThreadStaticDesc = CreateStaticGCDesc(state.ThreadStaticGCLayout, out state.AllocatedThreadStaticGCDesc, out cbThreadStaticGCDesc); #if GENERICS_FORCE_USG TestGCDescsForEquality(state.ThreadStaticDesc, state.NonUniversalThreadStaticGCDesc, cbThreadStaticGCDesc, false); #endif } // If we have a class constructor, our NonGcDataSize MUST be non-zero Debug.Assert(!state.HasStaticConstructor || (state.NonGcDataSize != 0)); } if (isGeneric) { if (!RuntimeAugments.CreateGenericInstanceDescForType(*(RuntimeTypeHandle *)&pEEType, arity, state.NonGcDataSize, nonGCStaticDataOffset, state.GcDataSize, (int)state.ThreadStaticOffset, state.GcStaticDesc, state.ThreadStaticDesc, state.GenericVarianceFlags)) { throw new OutOfMemoryException(); } } else { Debug.Assert(arity == 0 || isGenericEETypeDef); // We don't need to report the non-gc and gc static data regions and allocate them for non-generics, // as we currently place these fields directly into the image if (!isGenericEETypeDef && state.ThreadDataSize != 0) { // Types with thread static fields ALWAYS get a GID. The GID is used to perform GC // and lifetime management of the thread static data. However, these GIDs are only used for that // so the specified GcDataSize, etc are 0 if (!RuntimeAugments.CreateGenericInstanceDescForType(*(RuntimeTypeHandle *)&pEEType, 0, 0, 0, 0, (int)state.ThreadStaticOffset, IntPtr.Zero, state.ThreadStaticDesc, null)) { throw new OutOfMemoryException(); } } } if (state.Dictionary != null) { state.HalfBakedDictionary = state.Dictionary.Allocate(); } Debug.Assert(!state.HalfBakedRuntimeTypeHandle.IsNull()); Debug.Assert((state.NumSealedVTableEntries == 0 && state.HalfBakedSealedVTable == IntPtr.Zero) || (state.NumSealedVTableEntries > 0 && state.HalfBakedSealedVTable != IntPtr.Zero)); Debug.Assert((state.Dictionary == null && state.HalfBakedDictionary == IntPtr.Zero) || (state.Dictionary != null && state.HalfBakedDictionary != IntPtr.Zero)); successful = true; } finally { if (!successful) { if (eeTypePtrPlusGCDesc != IntPtr.Zero) { MemoryHelpers.FreeMemory(eeTypePtrPlusGCDesc); } if (dynamicDispatchMapPtr != IntPtr.Zero) { MemoryHelpers.FreeMemory(dynamicDispatchMapPtr); } if (state.HalfBakedSealedVTable != IntPtr.Zero) { MemoryHelpers.FreeMemory(state.HalfBakedSealedVTable); } if (state.HalfBakedDictionary != IntPtr.Zero) { MemoryHelpers.FreeMemory(state.HalfBakedDictionary); } if (state.AllocatedStaticGCDesc) { MemoryHelpers.FreeMemory(state.GcStaticDesc); } if (state.AllocatedThreadStaticGCDesc) { MemoryHelpers.FreeMemory(state.ThreadStaticDesc); } } } }