Пример #1
0
        /// <summary>
        /// REVIEW: This was the original CategoriesToWeights function. Should be deprecated once we can validate the new function works
        /// better. It contains a subtle issue, such that categories with poor performance but which are seen a lot will have
        /// high weight. New function addresses this issue, while also improving exploration capability of algorithm.
        /// </summary>
        /// <param name="param"></param>
        /// <param name="previousRuns"></param>
        /// <returns></returns>
        private double[] CategoriesToWeightsOld(DiscreteValueGenerator param, IEnumerable <IRunResult> previousRuns)
        {
            double[] weights = new double[param.Count];
            Dictionary <string, int> labelToIndex = new Dictionary <string, int>();

            // Map categorical values to their index.
            for (int j = 0; j < param.Count; j++)
            {
                labelToIndex[param[j].ValueText] = j;
            }

            // Add pseudo-observations, to account for unobserved parameter settings.
            for (int i = 0; i < weights.Length; i++)
            {
                weights[i] = 0.1;
            }

            // Sum up the results for each category value.
            bool isMaximizing = true;

            foreach (RunResult r in previousRuns)
            {
                weights[labelToIndex[r.ParameterSet[param.Name].ValueText]] += r.MetricValue;
                isMaximizing = r.IsMetricMaximizing;
            }

            // Normalize weights to sum to one and return
            return(isMaximizing ? SweeperProbabilityUtils.Normalize(weights) : SweeperProbabilityUtils.InverseNormalize(weights));
        }
Пример #2
0
        internal Parameter(T[] candidates)
        {
            var option = new DiscreteValueGenerator <T> .Option <T>()
            {
                Values = candidates,
            };

            this.ValueGenerator = new DiscreteValueGenerator <T>(option);
        }
Пример #3
0
        public void TestDiscreteValueSweep(double normalizedValue, string expected)
        {
            var paramSweep = new DiscreteValueGenerator(new DiscreteParamArguments()
            {
                Name = "bla", Values = new[] { "foo", "bar", "baz" }
            });
            var value = paramSweep.CreateFromNormalized(normalizedValue);

            Assert.Equal("bla", value.Name);
            Assert.Equal(expected, value.ValueText);
        }
        public void DiscreteValueGenerator_should_return_one_hot_encode()
        {
            var objects = new object[] { "a", 2, "c", 4 };
            var option  = new DiscreteValueGenerator <object> .Option <object>()
            {
                Name   = "discrete",
                Values = objects,
            };

            var generator = new DiscreteValueGenerator <object>(option);

            generator.OneHotEncodeValue(new ObjectParameterValue <object>("val", objects[0])).Should().BeEquivalentTo(new int[] { 1, 0, 0, 0 });
        }
        public void DiscreteValueGenerator_should_generate_value_from_normalize(object a, object b, object c, object d)
        {
            var objects = new object[] { a, b, c, d };
            var option  = new DiscreteValueGenerator <object> .Option <object>()
            {
                Name   = "discrete",
                Values = objects,
            };

            var generator = new DiscreteValueGenerator <object>(option);

            objects.Should().Contain(generator.CreateFromNormalized(0.5).RawValue);
            generator.Count.Should().Be(4);
        }
        public void RandomGridSweeperReturnsDistinctValuesWhenProposeSweep()
        {
            DiscreteValueGenerator valueGenerator = CreateDiscreteValueGenerator();

            var env     = new MLContext(42);
            var sweeper = new RandomGridSweeper(env,
                                                new RandomGridSweeper.Options(),
                                                new[] { valueGenerator });

            var results = sweeper.ProposeSweeps(3);

            Assert.NotNull(results);

            int length = results.Length;

            Assert.Equal(2, length);
        }
Пример #7
0
        public void UniformRandomSweeperReturnsDistinctValuesWhenProposeSweep()
        {
            DiscreteValueGenerator valueGenerator = CreateDiscreteValueGenerator();

            var env     = new MLContext(42);
            var sweeper = new UniformRandomSweeper(env,
                                                   new SweeperBase.ArgumentsBase(),
                                                   new[] { valueGenerator });

            var results = sweeper.ProposeSweeps(3);

            Assert.NotNull(results);

            int length = results.Length;

            Assert.Equal(2, length);
        }
Пример #8
0
        public void RandomGridSweeperReturnsDistinctValuesWhenProposeSweep()
        {
            DiscreteValueGenerator valueGenerator = CreateDiscreteValueGenerator();

            using (var writer = new StreamWriter(new MemoryStream()))
                using (var env = new ConsoleEnvironment(42, outWriter: writer, errWriter: writer))
                {
                    var sweeper = new RandomGridSweeper(env,
                                                        new RandomGridSweeper.Arguments(),
                                                        new[] { valueGenerator });

                    var results = sweeper.ProposeSweeps(3);
                    Assert.NotNull(results);

                    int length = results.Length;
                    Assert.Equal(2, length);
                }
        }
Пример #9
0
        /// <summary>
        /// New version of CategoryToWeights method, which fixes an issue where we could
        /// potentially assign a lot of mass to bad categories.
        /// </summary>
        private double[] CategoriesToWeights(DiscreteValueGenerator param, IRunResult[] previousRuns)
        {
            double[] weights = new double[param.Count];
            Dictionary <string, int> labelToIndex = new Dictionary <string, int>();

            int[] counts = new int[param.Count];

            // Map categorical values to their index.
            for (int j = 0; j < param.Count; j++)
            {
                labelToIndex[param[j].ValueText] = j;
            }

            // Add mass according to performance
            bool isMaximizing = true;

            foreach (RunResult r in previousRuns)
            {
                weights[labelToIndex[r.ParameterSet[param.Name].ValueText]] += r.MetricValue;
                counts[labelToIndex[r.ParameterSet[param.Name].ValueText]]++;
                isMaximizing = r.IsMetricMaximizing;
            }

            // Take average mass for each category
            for (int i = 0; i < weights.Length; i++)
            {
                weights[i] /= (counts[i] > 0 ? counts[i] : 1);
            }

            // If any learner has not been seen, default its average to
            // best value to encourage exploration of untried algorithms.
            double bestVal = isMaximizing ?
                             previousRuns.Cast <RunResult>().Where(r => r.HasMetricValue).Max(r => r.MetricValue) :
                             previousRuns.Cast <RunResult>().Where(r => r.HasMetricValue).Min(r => r.MetricValue);

            for (int i = 0; i < weights.Length; i++)
            {
                weights[i] += counts[i] == 0 ? bestVal : 0;
            }

            // Normalize weights to sum to one and return
            return(isMaximizing ? SweeperProbabilityUtils.Normalize(weights) : SweeperProbabilityUtils.InverseNormalize(weights));
        }
Пример #10
0
        public void SmacQuickRunTest()
        {
            var numInitialPopulation = 10;

            var floatValueGenerator = new FloatValueGenerator(new FloatParamArguments()
            {
                Name = "float", Min = 1, Max = 1000
            });
            var floatLogValueGenerator = new FloatValueGenerator(new FloatParamArguments()
            {
                Name = "floatLog", Min = 1, Max = 1000, LogBase = true
            });
            var longValueGenerator = new LongValueGenerator(new LongParamArguments()
            {
                Name = "long", Min = 1, Max = 1000
            });
            var longLogValueGenerator = new LongValueGenerator(new LongParamArguments()
            {
                Name = "longLog", Min = 1, Max = 1000, LogBase = true
            });
            var discreteValueGeneator = new DiscreteValueGenerator(new DiscreteParamArguments()
            {
                Name = "discrete", Values = new[] { "200", "400", "600", "800" }
            });

            var sweeper = new SmacSweeper(new MLContext(), new SmacSweeper.Arguments()
            {
                SweptParameters = new IValueGenerator[] {
                    floatValueGenerator,
                    floatLogValueGenerator,
                    longValueGenerator,
                    longLogValueGenerator,
                    discreteValueGeneator
                },
                NumberInitialPopulation = numInitialPopulation
            });

            // sanity check grid
            Assert.NotNull(floatValueGenerator[0].ValueText);
            Assert.NotNull(floatLogValueGenerator[0].ValueText);
            Assert.NotNull(longValueGenerator[0].ValueText);
            Assert.NotNull(longLogValueGenerator[0].ValueText);
            Assert.NotNull(discreteValueGeneator[0].ValueText);

            List <RunResult> results = new List <RunResult>();

            RunResult bestResult = null;

            for (var i = 0; i < numInitialPopulation + 1; i++)
            {
                ParameterSet[] pars = sweeper.ProposeSweeps(1, results);

                foreach (ParameterSet p in pars)
                {
                    float x1 = float.Parse(p["float"].ValueText);
                    float x2 = float.Parse(p["floatLog"].ValueText);
                    long  x3 = long.Parse(p["long"].ValueText);
                    long  x4 = long.Parse(p["longLog"].ValueText);
                    int   x5 = int.Parse(p["discrete"].ValueText);

                    double metric = x1 + x2 + x3 + x4 + x5;

                    RunResult result = new RunResult(p, metric, true);
                    if (bestResult == null || bestResult.MetricValue < metric)
                    {
                        bestResult = result;
                    }
                    results.Add(result);

                    Console.WriteLine($"{metric}\t{x1},{x2}");
                }
            }

            Console.WriteLine($"Best: {bestResult.MetricValue}");

            Assert.NotNull(bestResult);
            Assert.True(bestResult.MetricValue > 0);
        }