Пример #1
0
        public static void Run_Classify()
        {
            List <CDataRecord> records = LoadSample();

            DataTransformer <CDataRecord> dt = new DataTransformer <CDataRecord>();

            dt.DoFeaturesScaling(records);

            KernelSVM <CDataRecord> algorithm = new KernelSVM <CDataRecord>();

            algorithm.C = 20;
            ((GaussianKernel)algorithm.Kernel).Sigma = 0.01;

            algorithm.Train(records);

            Console.WriteLine("SVM(Gaussian Kernel) Model Built!");

            for (int i = 0; i < records.Count; i++)
            {
                CDataRecord rec = records[i] as CDataRecord;
                Console.WriteLine("rec: ");
                for (int j = 0; j < rec.Dimension; ++j)
                {
                    Console.WriteLine("X[" + j + "] = " + "[" + rec[j] + "] ");
                }
                Console.WriteLine("Label: " + "[" + rec.Label + "] ");
                Console.WriteLine("Predicted Label: " + algorithm.Predict(records[i]));
            }
        }
Пример #2
0
        public static void Run_Rank()
        {
            List <CDataRecord> records = LoadSample();

            DataTransformer <CDataRecord> dt = new DataTransformer <CDataRecord>();

            dt.DoFeaturesScaling(records);

            KernelSVM <CDataRecord> algorithm = new KernelSVM <CDataRecord>();

            algorithm.C = 20;                                //large value, high bias
            ((GaussianKernel)algorithm.Kernel).Sigma = 0.01; //low value, high bias

            algorithm.Train(records);

            Console.WriteLine("SVM (Gaussian Kernel) Model Built!");

            for (int i = 0; i < records.Count; i++)
            {
                CDataRecord rec = records[i] as CDataRecord;
                Console.WriteLine("rec: ");
                for (int j = 0; j < rec.Dimension; ++j)
                {
                    Console.WriteLine("X[" + j + " = " + rec[j] + "]");
                }
                Console.WriteLine("Label: " + rec.Label);

                List <KeyValuePair <string, double> > ranks = algorithm.Rank(records, rec);
                for (int k = 0; k < ranks.Count; ++k)
                {
                    Console.WriteLine("{0}: score = {1}", ranks[k].Key, ranks[k].Value);
                }
            }
        }
Пример #3
0
        public static Glm FitModel(GlmSolverFactory solverFactory, List <RDataRecord> records)
        {
            DataTransformer dt = new DataTransformer();

            dt.DoFeaturesScaling(records);

            Glm solver = solverFactory.CreateSolver(records);

            solver.Solve();

            return(solver);
        }