private async void ButtonSearch_Click(object sender, EventArgs e) { bool found = false; foreach (var item in DataGetter.GetData()) { if (textBoxSearchCountry.Text == item.Name) { textBoxCountryNameResult.Text = item.Name; textBoxCapital.Text = item.Capital; textBoxAlpha3Code.Text = item.Alpha3Code; textBoxArea.Text = item.Area.ToString(); textBoxPopulation.Text = item.Population.ToString(); textBoxRegion.Text = item.Region; found = true; break; } } if (found == false) { MessageBox.Show("Страна не была найдена"); } else if (MessageBox.Show("Сохранить в базу данных информацию?", "Страна найдена", MessageBoxButtons.YesNo) == DialogResult.Yes) { await highLvlSQL.SaveDataInDB(textBoxCountryNameResult.Text, textBoxAlpha3Code.Text, textBoxCapital.Text, textBoxArea.Text, textBoxPopulation.Text, textBoxRegion.Text); //сохранение найденных полей в базу данных dataGridView1.Rows.Clear(); dataGridView1.Refresh(); FillDataGrid(); } }
public ScatterExample() { InitializeComponent(); DataGetter dg = new DataGetter(); List <double[]> data = (List <double[]>)dg.GetData("group_B.csv", ','); List <double[]> data1 = (List <double[]>)dg.GetData("group_A.csv", ','); Values = new ChartValues <ObservablePoint>(); Values1 = new ChartValues <ObservablePoint>(); Perceptron.learn(); for (var i = 0; i < 500; i++) { Values.Add(new ObservablePoint(data[i][0], data[i][1])); Values1.Add(new ObservablePoint(data1[i][0], data1[i][1])); } DataContext = this; }
public int GetAnswer() { _slope = DataGetter.GetData(); var currentRow = 0; var currentCol = 0; var treesHit = 0; while (currentRow < _slope.Rows.Count) { if (IsATree(currentRow, currentCol)) { treesHit++; } currentCol += 3; currentRow += 1; } return(treesHit); }
public void DataGettingTest() { DataGetter dg = new DataGetter(); var data = dg.GetData("approximation1.txt", ' '); var one = dg.GetTrainingDataWithOneOutput("approximation1.txt", 1); var test = dg.GetTrainingDataWithOneOutput("approximation_test.txt", 1); var two = dg.GetTrainingDataWithChosenInputs("classification.txt", new bool[] { true, true, true, true }); { Console.WriteLine("test"); } var distCal = new EuclideanDistance(); RBFNetwork network = new RBFNetwork(distCal, new GaussianRadialBasis(), new KNNWidthCalculator(distCal, 2, 1), new RandomNeuronPositioner(), 2, one[0].DesiredOutput.Count, one[0].Input.Count); network.Train(new BackpropagationTrainingParameters(0.5, 20, 0, -1, 1, one), test); var output = network.ProcessInput(test[0].Input); }