Пример #1
0
        public void GridDetection()
        {
            // convert to gray-scaler image
            Mat image = originalImage.Mat.Clone();

            // blur the image
            CvInvoke.GaussianBlur(image, image, new Size(11, 11), 0);

            // threshold the image
            CvInvoke.AdaptiveThreshold(image, image, 255, AdaptiveThresholdType.MeanC, ThresholdType.Binary, 5, 2);
            CvInvoke.BitwiseNot(image, image);
            Mat kernel = new Mat(new Size(3, 3), DepthType.Cv8U, 1);

            Marshal.Copy(new byte[] { 0, 1, 0, 1, 1, 1, 0, 1, 0 }, 0, kernel.DataPointer, 9);
            CvInvoke.Dilate(image, image, kernel, new Point(-1, -1), 1, BorderType.Default, new MCvScalar(255));
            FindOuterGridByFloorFill(image);
            CvInvoke.Erode(image, image, kernel, new Point(-1, -1), 1, BorderType.Default, new MCvScalar(255));
            ImageShowCase.ShowImage(image, "biggest blob");
            VectorOfPointF lines = new VectorOfPointF();

            CvInvoke.HoughLines(image, lines, 1, Math.PI / 180, 200);


            // merging lines
            PointF[] linesArray = lines.ToArray();
            //MergeLines(linesArray, image);
            lines = RemoveUnusedLine(linesArray);

            Mat harrisResponse = new Mat(image.Size, DepthType.Cv8U, 1);

            CvInvoke.CornerHarris(image, harrisResponse, 5);

            DrawLines(lines.ToArray(), image);
            ImageShowCase.ShowImage(image, "corners");
        }
Пример #2
0
 private void btnHarrisApply_Click(object sender, EventArgs e)
 {
     try
     {
         Image <Gray, float> response = new Image <Gray, float>(img.Size); //we store in the response image
         CvInvoke.CornerHarris(img, response, 2, 3, 0.04);                 //calling Harris Corner Detector
         double max    = 0;
         double min    = 0;
         Point  maxLoc = new Point(0, 0);
         Point  minLoc = new Point(0, 0);
         CvInvoke.MinMaxLoc(response, ref min, ref max, ref minLoc, ref maxLoc); //Locating the maximum response
         Bitmap result = (Bitmap)picOriginal.Image.Clone();
         double tresh  = 0.01 * max;
         //For the i, j locations where the response[i,j] > tresh, we will set the pixel(i,j) to Red.
         for (int i = 0; i < result.Width; i++)
         {
             for (int j = 0; j < result.Height; j++)
             {
                 double r = response.Data[i, j, 0];
                 if (r > tresh)
                 {
                     //Setting to Red
                     result.SetPixel(j, i, Color.FromArgb(255, 0, 0));
                 }
             }
         }
         picResult.Image = result;
     }catch (Exception ex)
     {
         MessageBox.Show("Please load image first.");
     }
 }
Пример #3
0
        private void button_CornerHarris_Click(object sender, EventArgs e)
        {
            //  imageBox1.Image = imagebgr;
            // Image<Gray, byte> image_CornerHarris = imagetest;
            Mat imtstoimat = imagetest.Mat;

            Mat cornmat = imagetest.Mat;

            //CvInvoke.CvtColor(imtstoimat, cornmat, ColorConversion.Bgr2Gray);
            //Mat scr = new Mat(@"D:\image_CornerHarris.jpg", ImreadModes.AnyColor);//加载图像图片。
            // Mat gray_scr = new Mat(@"D:\image_CornerHarris.jpg", ImreadModes.Grayscale);//加载灰度 图像。
            ////CvInvoke.Threshold(gray_scr, gray_scr, 150, 255, ThresholdType.Otsu);//二值 化图像。
            ////CvInvoke.CornerHarris(gray_scr, gray_scr, 3);//二值化图像角点检测。
            ////CvInvoke.Canny(gray_scr, gray_scr, 120, 150);//canny 处理。
            ////CvInvoke.CornerHarris(gray_scr, gray_scr, 3);//轮廓角点检测。
            //CvInvoke.CornerHarris(gray_scr, gray_scr, 3);//灰度图像角点检测
            //CvInvoke.Normalize(gray_scr, gray_scr, 0, 255, NormType.MinMax);//进行映 射到【0,255】区域中。
            // gray_scr = gray_scr.ToImage<Gray, byte>().Mat;//把 gray 类型转成 Byte 类型。
            //imageBox1.Image = scr;//显示输入图像。
            //imageBox2.Image = gray_scr;//显示角点检测图像

            CvInvoke.CornerHarris(cornmat, cornmat, 3);                    //灰度图像角点检测
            CvInvoke.Normalize(cornmat, cornmat, 0, 255, NormType.MinMax); //进行映 射到【0,255】区域中。
            cornmat         = cornmat.ToImage <Gray, byte>().Mat;
            imageBox1.Image = imagemat;                                    //显示输入图像。
            imageBox2.Image = cornmat;                                     //显示角点检测图像
        }
Пример #4
0
        private static Image <Gray, float> GetRawCornerImage(Image <Gray, byte> contourImage)
        {
            var cornerImage = new Image <Gray, float>(contourImage.Size);

            CvInvoke.CornerHarris(contourImage, cornerImage, 7);
            return(cornerImage);
        }
Пример #5
0
        static void DoHarris(string imagePath)
        {
            var srcImage       = new Image <Gray, byte>(imagePath);
            var cornerImage    = new Image <Gray, float>(srcImage.Size);
            var thresholdImage = new Image <Gray, byte>(srcImage.Size);

            CvInvoke.CornerHarris(srcImage, cornerImage, 5, 5, 0.01);
            CvInvoke.Threshold(cornerImage, thresholdImage, 0.0001, 255.0, Emgu.CV.CvEnum.ThresholdType.BinaryInv);
            thresholdImage.Save($"corner-{imagePath}");
        }
Пример #6
0
        private void button20_Click(object sender, EventArgs e)
        {
            // crear una imagen para contener las esquinas
            Image <Gray, float> ImgFuentes  = new Image <Gray, float>(PictureAnalizer.ImagenEntrada);
            Image <Gray, float> ImgEsquinas = new Image <Gray, float>(PictureAnalizer.ImagenEntrada);

            CvInvoke.CornerHarris(ImgFuentes, ImgEsquinas, 3, 3, 0.01);

            PictureAnalizer.ImagenEntrada = ImgEsquinas.ToBitmap();
            ImagenEntrada.Image           = PictureAnalizer.ImagenEntrada;
        }
Пример #7
0
        private void processFrame(object sender, EventArgs arg)
        {
            cam.Retrieve(inputImage, 3);

            CvInvoke.CvtColor(inputImage, inputGrayImage, ColorConversion.Bgr2Gray, 0);
            CvInvoke.CornerHarris(inputGrayImage, outputCornerImage, 3);

            CvInvoke.Normalize(outputCornerImage, outputCornerImage, 0, 255, NormType.MinMax, DepthType.Cv32F);

            imageBoxInput.Image  = inputGrayImage;
            imageBoxOutput.Image = outputCornerImage;
        }
Пример #8
0
        private Mat PrepareImage(Mat Image)
        {
            Mat inputBinary = new Mat();

            CvInvoke.Threshold(Image, inputBinary, 0, 255, ThresholdType.Binary | ThresholdType.Otsu);
            _input_thinned = Skelatanize(inputBinary.Bitmap).Mat;
            Mat harris_corners = Mat.Zeros(_input_thinned.Rows, _input_thinned.Cols, DepthType.Cv32F, 3);

            CvInvoke.CornerHarris(_input_thinned, harris_corners, 2, 3, 0.04, BorderType.Default);
            Mat harris_normalised = new Mat();

            CvInvoke.Normalize(harris_corners, harris_normalised, 0, 255, NormType.MinMax, DepthType.Cv32F);
            return(harris_normalised);
        }
Пример #9
0
        int max_thresh = 175; //最大阈值

        private void button2_Click(object sender, EventArgs e)
        {
            //---------------------------【1】定义一些局部变量-----------------------------
            Image <Gray, float> dstImage = new Image <Gray, float>(src.Size);  //目标图
            Mat normImage = new Mat();                                         //归一化后的图
            Image <Gray, byte> scaledImage = new Image <Gray, byte>(src.Size); //线性变换后的八位无符号整型的图

            //---------------------------【2】初始化---------------------------------------
            //置零当前需要显示的两幅图,即清除上一次调用此函数时他们的值

            Image <Gray, byte> g_srcImage1 = src.Clone();

            //---------------------------【3】正式检测-------------------------------------
            //进行角点检测  点检测传出的为Float类型的数据
            CvInvoke.CornerHarris(src, dstImage, 2);

            // 归一化与转换
            CvInvoke.Normalize(dstImage, normImage, 0, 255, Emgu.CV.CvEnum.NormType.MinMax);
            double min = 0, max = 0;
            Point  minp = new Point(0, 0);
            Point  maxp = new Point(0, 0);

            CvInvoke.MinMaxLoc(normImage, ref min, ref max, ref minp, ref maxp);
            double scale = 255 / (max - min);
            double shift = min * scale;

            CvInvoke.ConvertScaleAbs(normImage, scaledImage, scale, shift);//将归一化后的图线性变换成8位无符号整型

            //---------------------------【4】进行绘制-------------------------------------
            // 将检测到的,且符合阈值条件的角点绘制出来
            byte[] data = scaledImage.Bytes;
            for (int j = 0; j < normImage.Rows; j++)
            {
                for (int i = 0; i < normImage.Cols; i++)
                {
                    int k = i * src.Width + j;
                    if (k < data.Length)
                    {
                        if (data[k] > thresh)
                        {
                            CvInvoke.Circle(g_srcImage1, new Point(i, j), 5, new MCvScalar(10, 10, 255), 2);
                            CvInvoke.Circle(scaledImage, new Point(i, j), 5, new MCvScalar(0, 10, 255), 2);
                        }
                    }
                }
            }
            imageBox1.Image = g_srcImage1;
            imageBox2.Image = scaledImage;
        }
Пример #10
0
        public override void Process(Image <Bgr, byte> image, out Image <Bgr, byte> annotatedImage, out List <object> data)
        {
            base.Process(image, out annotatedImage, out data);

            // create image for the corners
            var corners = new Image <Gray, float>(image.Size);

            // run the Harris corner detector against the image
            CvInvoke.CornerHarris(
                image.Convert <Gray, byte>(),
                corners,
                _blockSize,
                _apertureSize);

            // normalize the image
            CvInvoke.Normalize(corners, corners);

            // optionally show the corners image
            if (_viewCorners)
            {
                annotatedImage = corners.Convert <Bgr, byte>();
                return;
            }

            // crate gray byte image from corners image
            var gray = corners.Convert <Gray, byte>();

            data = new List <object>();

            // for each pixel annotate the corner if
            // the inensity is beyond the threshold
            for (var j = 0; j < gray.Rows; j++)
            {
                for (var i = 0; i < gray.Cols; i++)
                {
                    if (!(gray[j, i].Intensity > _threshold))
                    {
                        continue;
                    }

                    var circle = new CircleF(new PointF(i, j), 1);
                    annotatedImage.Draw(circle, new Bgr(_annoColor.Color()), _lineThick);
                    data.Add(new Circle(circle));
                }
            }
        }
Пример #11
0
        static void Main(string[] args)
        {
            var img         = new Image <Bgr, Byte>(DataDir.Contours("multipieces.jpg"));
            var grey        = new Image <Gray, byte>(img.Bitmap);
            var smooth      = grey.SmoothGaussian(7);
            var thresholded = smooth.ThresholdBinary(new Gray(160), new Gray(256));

            using (VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint())
            {
                // Build list of contours
                CvInvoke.FindContours(thresholded, contours, null, RetrType.List, ChainApproxMethod.ChainApproxSimple);

                var contourAreas = Enumerable.Range(0, contours.Size).Select(i => CvInvoke.ContourArea(contours[i]))
                                   .ToArray();

                var filteredAreas = contourAreas.Where(a => a > 500).OrderBy(a => a).ToArray();
                var median        = filteredAreas.Skip(filteredAreas.Length / 2).FirstOrDefault();

                const double deviation = 0.2;
                var          from      = median * (1 - deviation);
                var          to        = median * (1 + deviation);

                for (int i = 0; i < contours.Size; i++)
                {
                    var area = contourAreas[i];
                    if (area < from || area > to)
                    {
                        continue;
                    }

                    var contour = contours[i];

                    CvInvoke.Polylines(img, contour, true, new Bgr(Color.Red).MCvScalar, 4);
                }
            }

            var cornerImage = new Image <Gray, float>(thresholded.Size);

            CvInvoke.CornerHarris(thresholded, cornerImage, 3);
            var cornersThresholded = cornerImage.ThresholdBinaryInv(new Gray(160), new Gray(256));

            cornersThresholded.Bitmap.Save(DataDir.Contours("cornerImage.bmp"), ImageFormat.Bmp);

            img.Bitmap.Save(DataDir.Contours("markedContours.bmp"), ImageFormat.Bmp);
        }
Пример #12
0
 /// <summary>
 /// Compute Harris Conrner
 /// </summary>
 /// <param name="img">Source Image</param>
 public void Detect(Image <Gray, Byte> img)
 {
     this._CornerStrength = new Image <Gray, float>(img.Size);
     //Harris computation
     CvInvoke.CornerHarris(
         img,
         this._CornerStrength,
         this._Aperture,
         this._Neighborhood,
         this._K);
     //internal threshold computation
     double[] maxStrength;
     double[] minStrength; //not used
     Point[]  minPoints;   //not used
     Point[]  maxPoints;   //not used
     this._CornerStrength.MinMax(out minStrength, out maxStrength, out minPoints, out maxPoints);
     this._MaxStrength = maxStrength[0];
 }
Пример #13
0
        /// <summary>
        /// Compute Harris corners
        /// </summary>
        /// <param name="image">source image</param>
        public void Detect(Image <Gray, Byte> image)
        {
            this._CornerStrength = new Image <Gray, float>(image.Size);
            //Harris computation
            CvInvoke.CornerHarris(
                image,                //source image
                this._CornerStrength, //result image
                this._Neighborhood,   //neighborhood size
                this._Aperture,       //aperture size
                this._K);             //Harris parameter

            //internal threshold computation
            double[] maxStrength;
            double[] minStrength; //not used
            Point[]  minPoints;   //not used
            Point[]  maxPoints;   //not used
            this._CornerStrength.MinMax(out minStrength, out maxStrength, out minPoints, out maxPoints);
            this._MaxStrength = maxStrength[0];
        }
Пример #14
0
        public void CornerDetection(VisionProfile profile, Mat img)
        {
            var output                 = new Mat();
            var outputNormalized       = new Mat();
            var outputNormalizedScaled = new Mat();

            CvInvoke.CornerHarris(img, output, profile.HarrisCornerBlockSize, profile.HarrisCornerAperture, profile.HarrisCornerK, BorderType.Default);
            CvInvoke.Normalize(output, outputNormalized, 0, 255, NormType.MinMax, DepthType.Cv32F, null);
            CvInvoke.ConvertScaleAbs(outputNormalized, outputNormalizedScaled, 5, 5);

            for (int j = 0; j < outputNormalized.Rows; j++)
            {
                for (int i = 0; i < outputNormalized.Cols; i++)
                {
                    //  if ((int)outputNormalized.GetData(j,i) > profile.HarrisCornerThreshold)
                    {
                        //   circle(outputNormalizedScaled, Point(i, j), 5, Scalar(0), 2, 8, 0);
                    }
                }
            }
        }
    public List <Vector2> GetCornerPoints()
    {
        Image <Gray, float> cornerimg    = new Image <Gray, float>(this.img.Size);
        Image <Gray, Byte>  cornerthrimg = new Image <Gray, Byte>(this.img.Size);
        Image <Gray, Byte>  cannyimg     = this.img.Canny(60, 100);

        CvInvoke.CornerHarris(cannyimg, cornerimg, 3, 3, 0.04);

        //CvInvoke.cvNormalize(cornerimg, cornerimg, 0, 255, Emgu.CV.CvEnum.NORM_TYPE.CV_MINMAX, IntPtr.Zero);  //标准化处理

        double min = 0, max = 0;

        System.Drawing.Point minp = new System.Drawing.Point(0, 0);
        System.Drawing.Point maxp = new System.Drawing.Point(0, 0);
        CvInvoke.MinMaxLoc(cornerimg, ref min, ref max, ref minp, ref maxp);
        double scale = 255 / (max - min);
        double shift = min * scale;

        CvInvoke.ConvertScaleAbs(cornerimg, cornerthrimg, scale, shift);//进行缩放,转化为byte类型
        byte[]         data      = cornerthrimg.Bytes;
        List <Vector2> corners   = new List <Vector2>();
        List <Vector3> corners_3 = new List <Vector3>();

        for (int i = 0; i < cornerimg.Height; i++)
        {
            for (int j = 0; j < cornerimg.Width; j++)
            {
                int k = i * cornerthrimg.Width + j;
                if (data[k] > 80)    //通过阈值判断
                {
                    corners.Add(new Vector2(j, i));
                    corners_3.Add(m_projector.ImageToWorld(corners.Last()));
                }
            }
        }
        m_renderEngine.DrawPoints(corners_3);
        return(corners);
    }
        private void ApplyHarisCorner(int threshold = 200)
        {
            try
            {
                if (imgList["Input"] == null)
                {
                    return;
                }

                var img  = imgList["Input"].Clone();
                var gray = img.Convert <Gray, byte>();

                var corners = new Mat();
                CvInvoke.CornerHarris(gray, corners, 2);
                CvInvoke.Normalize(corners, corners, 255, 0, Emgu.CV.CvEnum.NormType.MinMax);

                Matrix <float> matrix = new Matrix <float>(corners.Rows, corners.Cols);
                corners.CopyTo(matrix);

                for (int i = 0; i < matrix.Rows; i++)
                {
                    for (int j = 0; j < matrix.Cols; j++)
                    {
                        if (matrix[i, j] > threshold)
                        {
                            CvInvoke.Circle(img, new Point(j, i), 5, new MCvScalar(0, 0, 255), 3);
                        }
                    }
                }

                imageBoxEx1.Image = img.AsBitmap();
            }
            catch (Exception ex)
            {
                throw new Exception(ex.Message);
            }
        }
        public Image <Gray, Byte> harrisCornerDetection()
        {
            // original source image as grayscale
            Image <Gray, Byte> m_SourceImage = null;

            // raw corner strength image (must be 32-bit float)
            Image <Gray, float> m_CornerImage = null;

            // inverted thresholded corner strengths (for display)
            Image <Gray, Byte> m_ThresholdImage = null;

            // create and show source image as grayscale
            m_SourceImage = this.preProcessedImageInGrayScale;
            // create corner strength image and do Harris
            m_CornerImage = new Image <Gray, float>(m_SourceImage.Size);
            CvInvoke.CornerHarris(m_SourceImage, m_CornerImage, 3, 3, 0.01);

            // create and show inverted threshold image
            m_ThresholdImage = new Image <Gray, Byte>(m_SourceImage.Size);
            CvInvoke.Threshold(m_CornerImage, m_ThresholdImage, 0.0001,
                               255.0, ThresholdType.BinaryInv);
            m_ThresholdImage.Save("harrisCornerDetection.jpg");
            return(m_ThresholdImage);
        }
Пример #18
0
 private void button3_Click(object sender, EventArgs e)
 {
     harrisImage = new Image <Gray, float>(img.Size);
     CvInvoke.CornerHarris(img, harrisImage, 2, 3, 0.01);
     picProcImage.BackgroundImage = harrisImage.ToBitmap();
 }
Пример #19
0
        public AlgorithmResult DetectCornerHarris(
            string filename,
            byte threshold,
            int blockSize,
            int apertureSize,
            double k,
            HarrisBorderType borderType)
        {
            AlgorithmResult   result = new AlgorithmResult();
            Image <Bgr, byte> image  = ImageHelper.GetImage(filename);
            var resultImage          = new Image <Bgr, byte>(filename);

            // Create new (gray, float) image for corner
            var corners = new Image <Gray, float>(image.Size);

            // Harris corner with GrayScale
            CvInvoke.CornerHarris(
                image.Convert <Gray, byte>(),
                corners,
                blockSize,
                apertureSize,
                k,
                GetBorderType(borderType));

            // Normalize
            CvInvoke.Normalize(corners, corners);

            // Set resultImage after normalizing
            resultImage = corners.Convert <Bgr, byte>();

            // Crate new (gray, byte) image for corner
            var gray = corners.Convert <Gray, byte>();

            result.CircleDatas = new List <CirclePointModel>();

            // for each pixel annotate the corner
            // if inensity is beyond the threshold
            for (var j = 0; j < gray.Rows; j++)
            {
                for (var i = 0; i < gray.Cols; i++)
                {
                    if (!(gray[j, i].Intensity > threshold))
                    {
                        continue;
                    }

                    var circle = new CircleF(new PointF(i, j), 1);
                    resultImage.Draw(circle, new Bgr(Color.FromArgb(255, 77, 77)), 3);
                    result.CircleDatas.Add(new CirclePointModel()
                    {
                        CenterX = circle.Center.X,
                        CenterY = circle.Center.Y,
                        Radius  = circle.Radius,
                        Area    = circle.Area
                    });
                }
            }

            result.ImageArray = ImageHelper.SetImage(resultImage);

            return(result);
        }
        public static void processImage()
        {
            IImage image;
            string finalFileName;
            string finalFileNameForANN;
            string imgNumber;
            Mat    grayscaleImg  = new Mat();
            Mat    histImg       = new Mat();
            Mat    downScaledImg = new Mat();
            Mat    smoothedImg   = new Mat();
            Mat    sobelImg      = new Mat();
            Mat    cannyImg      = new Mat();
            Mat    eigenImg      = new Mat();
            int    xorder        = 0;
            int    yorder        = 1;

            string folderResizedImgFaces   = @"testImages/ResizedFaces";
            string folderProcessedImgFaces = @"testImages/ProcessedFaces/";
            string folderProcessedSobel    = @"testImages/ProcessedSobel/";
            string folderEasyRecog         = @"testImages/ProcessedSmoothEasyRecog/";
            string folderCannyRecog        = @"testImages/ProcessedCannyRecog/";
            string imgExtension            = ".bmp";
            int    number = 0;

            //Read all files in the source image folder
            var sourceImgFiles = Directory.GetFiles(folderResizedImgFaces, "*.bmp", SearchOption.AllDirectories);            //List<string> imgFiles = new List<string>();

            foreach (string fileName in sourceImgFiles)
            {
                // convert source image to UMat format (an array class)
                image = new UMat(fileName, ImreadModes.Color);

                // turns color image to grayscale
                CvInvoke.CvtColor(image, grayscaleImg, ColorConversion.Bgr2Gray);
                imgNumber     = number.ToString();
                finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
                grayscaleImg.Save(finalFileName);
                number = number + 1;

                // normalizes brightness and contrast
                CvInvoke.EqualizeHist(grayscaleImg, histImg);
                imgNumber     = number.ToString();
                finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
                grayscaleImg.Save(finalFileName);
                number = number + 1;

                // downsamples and rejects even rows and columns
                CvInvoke.PyrDown(grayscaleImg, downScaledImg);
                imgNumber     = number.ToString();
                finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
                downScaledImg.Save(finalFileName);
                number = number + 1;

                // upsamples and injects zero rows and columns ( smoothed image)
                CvInvoke.PyrUp(downScaledImg, smoothedImg);
                imgNumber           = number.ToString();
                finalFileNameForANN = folderEasyRecog + imgNumber + imgExtension;
                finalFileName       = folderProcessedImgFaces + imgNumber + imgExtension;
                smoothedImg.Save(finalFileName);
                smoothedImg.Save(finalFileNameForANN);
                number = number + 1;

                // perform Sobel operation on the img
                // save to Sobel folder
                CvInvoke.Sobel(smoothedImg, sobelImg, DepthType.Default, xorder, yorder);
                imgNumber           = number.ToString();
                finalFileName       = folderProcessedImgFaces + imgNumber + imgExtension;
                finalFileNameForANN = folderProcessedSobel + imgNumber + imgExtension;
                sobelImg.Save(finalFileName);
                sobelImg.Save(finalFileNameForANN);
                number = number + 1;

                // perform Canny edge detection on the img
                CvInvoke.Canny(smoothedImg, cannyImg, 100, 60);
                imgNumber           = number.ToString();
                finalFileName       = folderProcessedImgFaces + imgNumber + imgExtension;
                finalFileNameForANN = folderCannyRecog + imgNumber + imgExtension;
                cannyImg.Save(finalFileName);
                cannyImg.Save(finalFileNameForANN);
                number = number + 1;

                // perform Corner Harris detection on the img
                CvInvoke.CornerHarris(smoothedImg, eigenImg, 3, 3, 0.04, BorderType.Default);
                imgNumber     = number.ToString();
                finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
                eigenImg.Save(finalFileName);
                number = number + 1;
            }
        }
Пример #21
0
        int symm_rad_range  = 5;  //100D : 66  //indu 20  //hospi 35
        public Particle_parameter_for_fullimg(Image <Bgr, byte> img)
        {
            width   = img.Width;
            height  = img.Height;
            grayimg = img.Convert <Gray, byte>();
            //**Gradient
            //horizontal filter
            sobelX = grayimg.Sobel(1, 0, 3);
            //vertical filter
            sobelY = grayimg.Sobel(0, 1, 3);

            //**Saturation
            saturation = grayimg.CopyBlank();
            for (int j = 0; j < height; ++j)
            {
                for (int i = 0; i < width; ++i)
                {
                    saturation[j, i] = new Gray(Color.FromArgb((int)img[j, i].Red, (int)img[j, i].Green, (int)img[j, i].Blue).GetSaturation() * 256);
                }
            }
            Image <Gray, Byte> imageL = saturation.Not();

            CvInvoke.MedianBlur(imageL.Mat, saturation.Mat, 3);
            saturation._EqualizeHist();
            double otsu;

            otsu = CvInvoke.Threshold(saturation, imageL, 0, 255, ThresholdType.Otsu);
            CvInvoke.Threshold(saturation, saturation, (otsu + 255) * 0.6, 255, ThresholdType.Binary);


            //**frst
            Mat input = grayimg.Mat;
            Mat output;

            fullfrst(ref input, alpha_symm, 0.1);
            //frst2d(ref input, out output, rad_symm, alpha_symm, 0.1);
            //frst = output.Clone();


            //for (int i = 0; i < contours.Size; i++)
            //{
            //    img.Draw(new CircleF(mc[i], 2), new Bgr(Color.Green), 0);
            //}


            //**harris
            m_SourceImage = grayimg.Clone();
            // create corner strength image and do Harris
            m_CornerImage = new Image <Gray, float>(m_SourceImage.Width, m_SourceImage.Height);
            //CvInvoke.CornerHarris(m_SourceImage, m_CornerImage, 3, 3);
            // create and show inverted threshold image
            //m_ThresholdImage = new Image<Gray, Byte>(m_SourceImage.Size);
            //CvInvoke.Threshold(m_CornerImage, m_ThresholdImage, 0.0001,
            //    255.0, Emgu.CV.CvEnum.ThresholdType.BinaryInv);

            //Image<Gray, byte>  c = new Image<Gray, byte>(m_SourceImage.Width, m_SourceImage.Height);
            CvInvoke.CornerHarris(m_SourceImage, m_CornerImage, HarrisBlockSize);                       //注意:角点检测传出的为Float类型的数据

            CvInvoke.Normalize(m_CornerImage, m_CornerImage, 0, 255, NormType.MinMax, DepthType.Cv32F); //标准化处理
            double min = 0, max = 0;
            Point  minp = new Point(0, 0);
            Point  maxp = new Point(0, 0);

            CvInvoke.MinMaxLoc(m_CornerImage, ref min, ref max, ref minp, ref maxp);
            double scale = 255 / (max - min);
            double shift = min * scale;

            CvInvoke.ConvertScaleAbs(m_CornerImage, m_SourceImage, scale, shift);//进行缩放,转化为byte类型
            //c.Save("harris.bmp");
            //byte[] data = c.Bytes;
            //for (int i = 0; i < m_CornerImage.Height; i++)
            //{
            //    for (int j = 0; j < m_CornerImage.Width; j++)
            //    {
            //        int k = i * m_SourceImage.Width + j;
            //        if (data[k] > 100)    //通过阈值判断
            //        {
            //            CvInvoke.Circle(m_SourceImage, new Point(j, i), 1, new MCvScalar(0, 0, 255, 255), 2);
            //        }
            //    }
            //}
        }
        public static void processImage(string imgPath)
        {
            IImage image;
            string finalFileName;
            string imgNumber;
            string imgToProcess            = imgPath;
            Mat    grayscaleImg            = new Mat();
            Mat    histImg                 = new Mat();
            Mat    downScaledImg           = new Mat();
            Mat    smoothedImg             = new Mat();
            Mat    sobelImg                = new Mat();
            Mat    cannyImg                = new Mat();
            Mat    eigenImg                = new Mat();
            int    xorder                  = 0;
            int    yorder                  = 1;
            string folderProcessedImgFaces = @"testImages/ShowFaces/pro";
            string imgExtension            = ".bmp";
            int    number                  = 0;

            // convert source image to UMat format (an array class)
            image = new UMat(imgToProcess, ImreadModes.Color);

            // turns color image to grayscale
            CvInvoke.CvtColor(image, grayscaleImg, ColorConversion.Bgr2Gray);
            imgNumber     = number.ToString();
            finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
            grayscaleImg.Save(finalFileName);
            number = number + 1;

            // normalizes brightness and contrast
            CvInvoke.EqualizeHist(grayscaleImg, histImg);
            imgNumber     = number.ToString();
            finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
            grayscaleImg.Save(finalFileName);
            number = number + 1;

            // downsamples and rejects even rows and columns
            CvInvoke.PyrDown(grayscaleImg, downScaledImg);
            imgNumber     = number.ToString();
            finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
            downScaledImg.Save(finalFileName);
            number = number + 1;

            // upsamples and injects zero rows and columns ( smoothed image)
            CvInvoke.PyrUp(downScaledImg, smoothedImg);
            imgNumber     = number.ToString();
            finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
            smoothedImg.Save(finalFileName);
            number = number + 1;

            // perform Sobel operation on the img
            CvInvoke.Sobel(smoothedImg, sobelImg, DepthType.Default, xorder, yorder);
            imgNumber     = number.ToString();
            finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
            sobelImg.Save(finalFileName);
            number = number + 1;

            // perform Canny edge detection on the img
            CvInvoke.Canny(smoothedImg, cannyImg, 100, 60);
            imgNumber     = number.ToString();
            finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
            cannyImg.Save(finalFileName);
            number = number + 1;

            // perform Canny edge detection on the img
            CvInvoke.CornerHarris(smoothedImg, eigenImg, 3, 3, 0.04, BorderType.Default);
            imgNumber     = number.ToString();
            finalFileName = folderProcessedImgFaces + imgNumber + imgExtension;
            eigenImg.Save(finalFileName);
            number = number + 1;
        }
Пример #23
0
        public Point WVPF(String Identifier)
        {
            #region setting
            if (Identifier.Last().ToString() == "R")
            {
                img      = CornerR.Clone();
                this.row = CornerR.Height;
                this.col = CornerR.Width;
                rowMean  = new double[row];
                colMean  = new double[col];
                col_row_Mean_Black();
            }
            if (Identifier.Last().ToString() == "L")
            {
                img      = CornerL.Clone();
                this.row = CornerL.Height;
                this.col = CornerL.Width;
                rowMean  = new double[row];
                colMean  = new double[col];
                col_row_Mean_Black();
            }


            #endregion

            Dictionary <int, Double> vVPF = new Dictionary <int, double>();
            Dictionary <int, Double> hVPF = new Dictionary <int, double>();

            #region harris

            Image <Gray, float> CornerL_harris = img.Convert <Gray, float>().CopyBlank();
            Image <Gray, float> CornerR_harris = img.Convert <Gray, float>().CopyBlank();

            double min = 0, max = 0;
            Point  minP = new Point();
            Point  maxP = new Point();
            if (Identifier.First().ToString() == "R" && Identifier.Last().ToString() == "L")// Patient's right eye inner corner
            {
                CornerL_harris = CornerL.Convert <Gray, float>();
                CvInvoke.CornerHarris(CornerL, CornerL_harris, 3);
                CvInvoke.Normalize(CornerL_harris, CornerL_harris, 0, 255, NormType.MinMax, DepthType.Cv32F);
                CornerL_harris = CornerL_harris.AbsDiff(new Gray(0));
                CvInvoke.MinMaxLoc(CornerL_harris, ref min, ref max, ref minP, ref maxP);

                vVPF = calculateVPF(vVPF, "Vertical", CornerR_harris);
                hVPF = calculateVPF(hVPF, "Horizontal", CornerR_harris);
            }
            else if (Identifier.First().ToString() == "L" && Identifier.Last().ToString() == "R")// Patient's left eye  inner corner
            {
                CornerR_harris = CornerR.Convert <Gray, float>();
                CvInvoke.CornerHarris(CornerR, CornerR_harris, 3);
                CvInvoke.Normalize(CornerR_harris, CornerR_harris, 0, 255, NormType.MinMax, DepthType.Cv32F);
                CornerR_harris = CornerR_harris.AbsDiff(new Gray(0));
                CvInvoke.MinMaxLoc(CornerR_harris, ref min, ref max, ref minP, ref maxP);

                vVPF = calculateVPF(vVPF, "Vertical", CornerL_harris);
                hVPF = calculateVPF(hVPF, "Horizontal", CornerL_harris);
            }
            else
            {
                vVPF = calculateVPF(vVPF, "Vertical");
                hVPF = calculateVPF(hVPF, "Horizontal");
            }
            #endregion

            //Draw the variance for visualization
            Image <Gray, byte> variance = img.Clone();

            // Calculate the diffrience between the point of variance
            Point[] p = new Point[col];
            Dictionary <int, int> diffMax = new Dictionary <int, int>();
            diffMax = VerticalDiffMax(p, diffMax, vVPF);


            var dicSort = from objDic in diffMax orderby objDic.Value descending select objDic;
            int CornerX = 0;

            if (Identifier.Last().ToString() == "L")
            {
                CornerX = dicSort.ElementAt(0).Key + CornerL.ROI.X;
            }
            if (Identifier.Last().ToString() == "R")
            {
                CornerX = dicSort.ElementAt(0).Key + CornerR.ROI.X;
            }

            variance.Draw(new LineSegment2D(new Point(dicSort.ElementAt(0).Key, 0), new Point(dicSort.ElementAt(0).Key, variance.Height)), new Gray(0), 1);
            variance.DrawPolyline(p, false, new Gray(255));
            variance.Save(Identifier.First().ToString() + "\\varianceVertical" + Identifier.Last().ToString() + ".jpg");



            // Calculate the diffrience between the point of variance
            p       = new Point[row];
            diffMax = new Dictionary <int, int>();
            diffMax = HorizontalDiffMax(p, diffMax, hVPF);

            dicSort = from objDic in diffMax orderby objDic.Value descending select objDic;

            int CornerY = 0;

            if (Identifier.Last().ToString() == "L")
            {
                CornerY = dicSort.ElementAt(0).Key + CornerL.ROI.Y;
            }
            else if (Identifier.Last().ToString() == "R")
            {
                CornerY = dicSort.ElementAt(0).Key + CornerR.ROI.Y;
            }


            // Draw a line to segment the CORNER area
            variance.Draw(new LineSegment2D(new Point(0, dicSort.ElementAt(0).Key), new Point(variance.Width, dicSort.ElementAt(0).Key)), new Gray(0), 1);
            variance.DrawPolyline(p, false, new Gray(255));
            variance.Save(Identifier.First().ToString() + "\\varianceCross" + Identifier.Last().ToString() + ".jpg");

            variance = img.Clone();
            variance.Draw(new LineSegment2D(new Point(0, dicSort.ElementAt(0).Key), new Point(variance.Width, dicSort.ElementAt(0).Key)), new Gray(0), 1);
            variance.DrawPolyline(p, false, new Gray(255));
            variance.Save(Identifier.First().ToString() + "\\varianceHorizontal" + Identifier.Last().ToString() + ".jpg");


            if (Identifier.First().ToString() == "R" && Identifier.Last().ToString() == "L")// Patient's right eye inner corner
            {
                return(maxP);
            }
            else if (Identifier.First().ToString() == "L" && Identifier.Last().ToString() == "R")// Patient's left eye inner corner
            {
                return(maxP);
            }
            else
            {
                return(new Point(CornerX, CornerY));
            }
        }
Пример #24
0
 private void harris_btn_Click(object sender, EventArgs e)
 {
     harrisImage = new Image <Gray, float>(img.Size);
     CvInvoke.CornerHarris(img, harrisImage, 2, 3, 0.02);
     modified_img.BackgroundImage = harrisImage.ToBitmap();
 }