private Boolean ClassificationTest(CustomVisionPredictionClient predictionApi)
        {
            Console.WriteLine("Making a prediction:");
            String filename = "C:\\Users\\User\\Desktop\\TestRec\\Pic\\KinectCapture";

            filename = filename + this.skeletonDetectedCount.ToString();
            filename = filename + ".png";
            using (var stream = File.OpenRead(filename))
            {
                System.Guid projectID = new Guid("8267e789-cff6-4c76-a901-782c6dfc3f04"); //เอาจากlinkของ Project ใน customvision.ai/projects/<ProjectID>#/manage
                Console.WriteLine("Making a prediction:");
                var result = predictionApi.ClassifyImage(projectID, "lightdark", stream);

                // Loop over each prediction and write out the results
                foreach (var c in result.Predictions)
                {
                    Console.WriteLine($"\t{c.TagName}: {c.Probability:P1}");
                    if (c.Probability > 0.6 && c.TagName == "dark")
                    {
                        return(true);
                    }
                }
                return(false);
            }
        }
Пример #2
0
        static void Main(string[] args)
        {
            string apiKey   = "fe3cedd23a9a480fb25bd91184ebb681";
            string endpoint = "https://westeurope.api.cognitive.microsoft.com";

            var client = new CustomVisionPredictionClient();

            client.ApiKey   = apiKey;
            client.Endpoint = endpoint;

            var files = Directory.GetFiles(Environment.CurrentDirectory, "*.jpg");

            foreach (var file in files)
            {
                using (var stream = File.OpenRead(file))
                {
                    var result = client.ClassifyImage(Guid.Parse("5da6478e-b413-4512-be92-1c4bb502893f"),
                                                      "Iteration2", stream);

                    foreach (var p in result.Predictions)
                    {
                        System.Console.WriteLine($"{p.TagName} {p.Probability:P4}");
                    }
                }
            }
        }
Пример #3
0
        public void MakePredictionRequest(string imageFilePath, IConfiguration configuration)
        {
            CustomVisionPredictionClient endpoint = new CustomVisionPredictionClient()
            {
                ApiKey   = configuration.GetSection("AzureKeys:PredictionKey").Value,
                Endpoint = "https://centralindia.api.cognitive.microsoft.com"
            };


            using (var stream = System.IO.File.OpenRead(imageFilePath))
            {
                var result = endpoint.ClassifyImage(Guid.Parse(System.IO.File.ReadAllText(@"./ProjectId.txt")), System.IO.File.ReadAllText(@"./PublishedModelName.txt"), System.IO.File.OpenRead(imageFilePath));


                //Loop over each prediction and write out the results
                foreach (var c in result.Predictions)
                {
                    if (c.Probability > 0.80)
                    {
                        tag_name = c.TagName;
                    }
                    //Console.WriteLine($"\t{c.TagName}: {c.Probability:P1} [ {c.BoundingBox.Left}, {c.BoundingBox.Top}, {c.BoundingBox.Width}, {c.BoundingBox.Height} ]");
                }
            }
        }
Пример #4
0
        public async Task <string> Analyze(string imageUrl)
        {
            var image = await Client.GetByteArrayAsync(imageUrl);

            var result = _predictionClient.ClassifyImage(
                projectId: new Guid("<guid>"),
                publishedName: "Iteration1",
                imageData: new MemoryStream(image));

            return(result.Predictions.OrderByDescending(x => x.Probability).First().TagName);
        }
        public async Task <string> Analyze(string imageUrl)
        {
            var image = await Client.GetByteArrayAsync(imageUrl);

            var result = _predictionClient.ClassifyImage(
                projectId: new Guid("efdba214-6789-43ed-aece-098e8d0bb54a"),
                publishedName: "minilitwareLab",
                imageData: new MemoryStream(image));

            return(result.Predictions.OrderByDescending(x => x.Probability).First().TagName);
        }
        // </snippet_publish>

        // <snippet_test>
        private static void TestIteration(CustomVisionPredictionClient predictionApi, Project project)
        {
            // Make a prediction against the new project
            Console.WriteLine("Making a prediction:");
            var result = predictionApi.ClassifyImage(project.Id, publishedModelName, testImage);

            // Loop over each prediction and write out the results
            foreach (var c in result.Predictions)
            {
                Console.WriteLine($"\t{c.TagName}: {c.Probability:P1}");
            }
        }
        static async Task <Dictionary <string, double> > ClassifyImage(CustomVisionPredictionClient endpoint,
                                                                       Project project, string publishedModelName, Dictionary <string, double> classificationResults)
        {
            // Make a prediction with given image
            var result = endpoint.ClassifyImage(project.Id, publishedModelName, testImage);

            // Loop over each prediction and write out the results
            foreach (var c in result.Predictions)
            {
                classificationResults.Add(c.TagName, c.Probability);
            }

            return(classificationResults);
        }
        public ImagePrediction MakePrediction(string localfile)
        {
            CustomVisionPredictionClient client = new CustomVisionPredictionClient()
            {
                ApiKey   = "key",
                Endpoint = "prediction url from admin console"
            };
            Guid projectId = new Guid("project GUID");

            ImagePrediction imagePrediction = null;

            MemoryStream testImage = new MemoryStream(File.ReadAllBytes(localfile));

            client.ClassifyImage(projectId, "DataEventProject", testImage);
            return(imagePrediction);
        }
Пример #9
0
        public bool Predict()
        {
            bool trueForDrinking = false;
            // Create a prediction endpoint, passing in obtained prediction key
            CustomVisionPredictionClient endpoint = new CustomVisionPredictionClient()
            {
                ApiKey   = predictionKey,
                Endpoint = SouthCentralUsEndpoint
            };

            // Make a prediction against the new project
            ConcurrentLogger.WriteLine("Making a prediction:");

            try
            {
                var toPredict = Directory.GetFiles(Path.Combine("Picture", "Prediction")).ToList();

                var testImage = new MemoryStream(File.ReadAllBytes(toPredict[0]));
                var result    = endpoint.ClassifyImage(project.Id, publishedModelName, testImage);

                foreach (var c in result.Predictions)
                {
                    ConcurrentLogger.WriteLine($"\t{c.TagName}: {c.Probability:P1}");

                    if ((c.TagName == "Drinking") && (c.Probability > 0.5))
                    {
                        trueForDrinking = true;
                    }
                }

                Thread.Sleep(3000);

                toPredict = Directory.GetFiles(Path.Combine("Picture", "Prediction")).ToList();
                foreach (string file in toPredict)
                {
                    File.Delete(file);
                    ConcurrentLogger.WriteLine($"\tDeleted file: {file}");
                }
            }
            catch (Exception)
            { }


            return(trueForDrinking);
        }
        static void Main(string[] args)
        {
            // Create a CustomVisionPredictionClient, initialize it with the settings of your
            // Custom Vision project and send a file over to classify.
            var client = new CustomVisionPredictionClient(new ApiKeyServiceClientCredentials(Constants.CV_KEY))
            {
                Endpoint = Constants.ENDPOINT
            };

            using var stream = File.Open("<YOUR_TESTFILE_NAME>", FileMode.Open);
            var prediction = client.ClassifyImage(Constants.PROJECT_ID, Constants.PUBLISHED_NAME, stream);

            foreach (var pred in prediction.Predictions)
            {
                Console.WriteLine($"{pred.TagName}: {pred.Probability}");
            }
            Console.ReadLine();
        }
Пример #11
0
        static void Main(string[] args)
        {
            try
            {
                // Get Configuration Settings
                IConfigurationBuilder builder       = new ConfigurationBuilder().AddJsonFile("appsettings.json");
                IConfigurationRoot    configuration = builder.Build();
                string prediction_endpoint          = configuration["PredictionEndpoint"];
                string prediction_key = configuration["PredictionKey"];
                Guid   project_id     = Guid.Parse(configuration["ProjectID"]);
                string model_name     = configuration["ModelName"];

                // Authenticate a client for the prediction API
                prediction_client = new CustomVisionPredictionClient(new Microsoft.Azure.CognitiveServices.Vision.CustomVision.Prediction.ApiKeyServiceClientCredentials(prediction_key))
                {
                    Endpoint = prediction_endpoint
                };

                // Classify test images
                String[] images = Directory.GetFiles("test-images");
                foreach (var image in images)
                {
                    Console.Write(image + ": ");
                    MemoryStream image_data = new MemoryStream(File.ReadAllBytes(image));
                    var          result     = prediction_client.ClassifyImage(project_id, model_name, image_data);

                    // Loop over each label prediction and print any with probability > 50%
                    foreach (var prediction in result.Predictions)
                    {
                        if (prediction.Probability > 0.5)
                        {
                            Console.WriteLine($"{prediction.TagName} ({prediction.Probability:P1})");
                        }
                    }
                }
            }
            catch (Exception ex)
            {
                Console.WriteLine("Error: " + ex.Message);
            }
        }
Пример #12
0
        protected List <TagPrediction> CheckImageData(byte[] imgBytes)
        {
            // Create a prediction endpoint, passing in obtained prediction key
            CustomVisionPredictionClient endpoint = new CustomVisionPredictionClient()
            {
                ApiKey   = predictionKey,
                Endpoint = endpointUrl
            };

            CustomVisionTrainingClient trainingApi = new CustomVisionTrainingClient()
            {
                ApiKey   = trainingKey,
                Endpoint = endpointUrl
            };

            var allTags = trainingApi.GetTags(PROJECT_ID);

            using (MemoryStream mem = new MemoryStream(imgBytes))
            {
                // Make a prediction against the new project
                var result = endpoint.ClassifyImage(PROJECT_ID, PUBLISHED_MODEL_NAME, mem);

                List <TagPrediction> predicts = new List <TagPrediction>();

                foreach (var entry in result.Predictions)
                {
                    Tag tag = allTags.Where(k => k.Id == entry.TagId).First();
                    predicts.Add(new TagPrediction()
                    {
                        TagDesc        = tag.Description,
                        TagId          = entry.TagId,
                        TagName        = entry.TagName,
                        TagProbability = entry.Probability
                    });
                }

                return(predicts);
            }
        }
Пример #13
0
        static void Main(string[] args)
        {
            CustomVisionPredictionClient endpoint = new CustomVisionPredictionClient()
            {
                ApiKey   = predictionKey,
                Endpoint = endPoint
            };

            IDictionary <string, string> dadosImagens = JsonConvert.DeserializeObject <IDictionary <string, string> >(File.ReadAllText("opcoes.json"));

            Console.WriteLine("Selecione a imagem de teste.");
            string opcao = Console.ReadLine();

            var imagemTeste = new MemoryStream(File.ReadAllBytes(dadosImagens[opcao]));

            var result = endpoint.ClassifyImage(new Guid("80b63914-a25c-4bcb-a483-4c8e261357a0"), "treeClassModel", imagemTeste);

            foreach (var c in result.Predictions)
            {
                Console.WriteLine($"\t{c.TagName}: {c.Probability:P1}");
            }
        }
Пример #14
0
        static void Main(string[] args)
        {
            // Add your training & prediction key from the settings page of the portal
            string trainingKey   = "16e883656e9746e0a9dc2744bc5d511a";
            string predictionKey = "3b069625032d4d6686f7de3cb62e1c4a";

            // Create the Api, passing in the training key
            CustomVisionTrainingClient trainingApi = new CustomVisionTrainingClient()
            {
                ApiKey   = trainingKey,
                Endpoint = SouthCentralUsEndpoint
            };

            // Create a new project
            Console.WriteLine("Creating new project:");

            Project project = null;

            if (!IsSurfaceClassification)
            {
                project = trainingApi.CreateProject("Flowers");

                // Make two tags in the new project
                var hemlockTag        = trainingApi.CreateTag(project.Id, "Hemlock");
                var japaneseCherryTag = trainingApi.CreateTag(project.Id, "Japanese Cherry");

                // Add some images to the tags
                Console.WriteLine("\tUploading images");
                LoadFlowerImagesFromDisk();

                // Images can be uploaded one at a time
                foreach (var image in hemlockImages)
                {
                    using (var stream = new MemoryStream(File.ReadAllBytes(image)))
                    {
                        trainingApi.CreateImagesFromData(project.Id, stream, new List <Guid>()
                        {
                            hemlockTag.Id
                        });
                    }
                }

                // Or uploaded in a single batch
                var imageFiles = japaneseCherryImages.Select(img => new ImageFileCreateEntry(Path.GetFileName(img), File.ReadAllBytes(img))).ToList();
                trainingApi.CreateImagesFromFiles(project.Id, new ImageFileCreateBatch(imageFiles, new List <Guid>()
                {
                    japaneseCherryTag.Id
                }));
            }
            else
            {
                project = trainingApi.CreateProject("Surface");

                // Make two tags in the new project
                var surfaceProTag    = trainingApi.CreateTag(project.Id, "surface-pro");
                var surfaceStudioTag = trainingApi.CreateTag(project.Id, "surface-studio");

                // Add some images to the tags
                Console.WriteLine("\tUploading images");
                LoadSurfaceImagesFromDisk();

                // Images can be uploaded one at a time
                foreach (var image in surfaceProImages)
                {
                    using (var stream = new MemoryStream(File.ReadAllBytes(image)))
                    {
                        trainingApi.CreateImagesFromData(project.Id, stream, new List <Guid>()
                        {
                            surfaceProTag.Id
                        });
                    }
                }

                // Or uploaded in a single batch
                var imageFiles = surfaceStudioImages.Select(img => new ImageFileCreateEntry(Path.GetFileName(img), File.ReadAllBytes(img))).ToList();
                trainingApi.CreateImagesFromFiles(project.Id, new ImageFileCreateBatch(imageFiles, new List <Guid>()
                {
                    surfaceStudioTag.Id
                }));
            }

            // Now there are images with tags start training the project
            Console.WriteLine("\tTraining");
            var iteration = trainingApi.TrainProject(project.Id);

            // The returned iteration will be in progress, and can be queried periodically to see when it has completed
            while (iteration.Status == "Training")
            {
                Thread.Sleep(1000);

                // Re-query the iteration to get it's updated status
                iteration = trainingApi.GetIteration(project.Id, iteration.Id);
            }

            // The iteration is now trained. Publish it to the prediction end point.
            var publishedModelName   = PublishedModelName;
            var predictionResourceId = PredictionResourceId;

            trainingApi.PublishIteration(project.Id, iteration.Id, publishedModelName, predictionResourceId);
            Console.WriteLine("Done!\n");

            // Now there is a trained endpoint, it can be used to make a prediction

            // Create a prediction endpoint, passing in obtained prediction key
            CustomVisionPredictionClient endpoint = new CustomVisionPredictionClient()
            {
                ApiKey   = predictionKey,
                Endpoint = SouthCentralUsEndpoint
            };

            // Make a prediction against the new project
            Console.WriteLine("Making a prediction:");
            var result = endpoint.ClassifyImage(project.Id, publishedModelName, testImage);

            // Loop over each prediction and write out the results
            foreach (var c in result.Predictions)
            {
                Console.WriteLine($"\t{c.TagName}: {c.Probability:P1}");
            }
            Console.ReadKey();
        }
Пример #15
0
        static void Main(string[] args)
        {
            // Add your Azure Custom Vision subscription key and endpoint to your environment variables.
            // <snippet_endpoint>
            string ENDPOINT = Environment.GetEnvironmentVariable("CUSTOM_VISION_ENDPOINT");
            // </snippet_endpoint>

            // <snippet_keys>
            // Add your training & prediction key from the settings page of the portal
            string trainingKey   = Environment.GetEnvironmentVariable("CUSTOM_VISION_TRAINING_KEY");
            string predictionKey = Environment.GetEnvironmentVariable("CUSTOM_VISION_PREDICTION_KEY");
            // </snippet_keys>

            // <snippet_create>
            // Create the Api, passing in the training key
            CustomVisionTrainingClient trainingApi = new CustomVisionTrainingClient()
            {
                ApiKey   = trainingKey,
                Endpoint = ENDPOINT
            };

            // Create a new project
            Console.WriteLine("Creating new project:");
            var project = trainingApi.CreateProject("My New Project");
            // </snippet_create>

            // <snippet_tags>
            // Make two tags in the new project
            var hemlockTag        = trainingApi.CreateTag(project.Id, "Hemlock");
            var japaneseCherryTag = trainingApi.CreateTag(project.Id, "Japanese Cherry");

            // </snippet_tags>

            // <snippet_upload>
            // Add some images to the tags
            Console.WriteLine("\tUploading images");
            LoadImagesFromDisk();

            // Images can be uploaded one at a time
            foreach (var image in hemlockImages)
            {
                using (var stream = new MemoryStream(File.ReadAllBytes(image)))
                {
                    trainingApi.CreateImagesFromData(project.Id, stream, new List <Guid>()
                    {
                        hemlockTag.Id
                    });
                }
            }
            // </snippet_upload>

            // Or uploaded in a single batch
            var imageFiles = japaneseCherryImages.Select(img => new ImageFileCreateEntry(Path.GetFileName(img), File.ReadAllBytes(img))).ToList();

            trainingApi.CreateImagesFromFiles(project.Id, new ImageFileCreateBatch(imageFiles, new List <Guid>()
            {
                japaneseCherryTag.Id
            }));

            // <snippet_train>
            // Now there are images with tags start training the project
            Console.WriteLine("\tTraining");
            var iteration = trainingApi.TrainProject(project.Id);

            // The returned iteration will be in progress, and can be queried periodically to see when it has completed
            while (iteration.Status == "Training")
            {
                Thread.Sleep(1000);

                // Re-query the iteration to get it's updated status
                iteration = trainingApi.GetIteration(project.Id, iteration.Id);
            }

            // The iteration is now trained. Publish it to the prediction end point.
            var publishedModelName   = "treeClassModel";
            var predictionResourceId = "<target prediction resource ID>";

            trainingApi.PublishIteration(project.Id, iteration.Id, publishedModelName, predictionResourceId);
            Console.WriteLine("Done!\n");
            // </snippet_train>

            // Now there is a trained endpoint, it can be used to make a prediction

            // <snippet_prediction_endpoint>
            // Create a prediction endpoint, passing in obtained prediction key
            CustomVisionPredictionClient endpoint = new CustomVisionPredictionClient()
            {
                ApiKey   = predictionKey,
                Endpoint = ENDPOINT
            };

            // </snippet_prediction_endpoint>

            // <snippet_prediction>
            // Make a prediction against the new project
            Console.WriteLine("Making a prediction:");
            var result = endpoint.ClassifyImage(project.Id, publishedModelName, testImage);

            // Loop over each prediction and write out the results
            foreach (var c in result.Predictions)
            {
                Console.WriteLine($"\t{c.TagName}: {c.Probability:P1}");
            }
            Console.ReadKey();
            // </snippet_prediction>
        }
Пример #16
0
        static void Main(string[] args)
        {
            //don't forget the other project
            //don't forget the custom vision portal https://www.customvision.ai/projects
            //use the custom vision portal to navigate to a project and unpublish
            // Add your Azure Custom Vision subscription key and endpoint to your environment variables.
            // <snippet_endpoint>
            string ENDPOINT = "https://stcustomvision-prediction.cognitiveservices.azure.com/";
            // </snippet_endpoint>

            // <snippet_keys>
            // Add your training & prediction key from the settings page of the portal
            string trainingKey   = "76fdb20ae1eb49e28733221e202909a5";
            string predictionKey = "74ad2b8d75fa4e4db72f23149516bcdd";
            // </snippet_keys>

            // <snippet_create>
            // Create the Api, passing in the training key
            CustomVisionTrainingClient trainingApi = new CustomVisionTrainingClient()
            {
                ApiKey   = trainingKey,
                Endpoint = ENDPOINT
            };

            // Create a new project
            Console.WriteLine("Creating new project:");
            var project = trainingApi.CreateProject("My New ImageClassification Project");
            // </snippet_create>

            // <snippet_tags>
            // Make two tags in the new project
            var hemlockTag        = trainingApi.CreateTag(project.Id, "Hemlock");
            var japaneseCherryTag = trainingApi.CreateTag(project.Id, "Japanese Cherry");

            // </snippet_tags>

            // <snippet_upload>
            // Add some images to the tags
            Console.WriteLine("\tUploading images");
            LoadImagesFromDisk();

            // Images can be uploaded one at a time
            foreach (var image in hemlockImages)
            {
                using (var stream = new MemoryStream(File.ReadAllBytes(image)))
                {
                    trainingApi.CreateImagesFromData(project.Id, stream, new List <Guid>()
                    {
                        hemlockTag.Id
                    });
                }
            }
            // </snippet_upload>

            // Or uploaded in a single batch
            var imageFiles = japaneseCherryImages.Select(img => new ImageFileCreateEntry(Path.GetFileName(img), File.ReadAllBytes(img))).ToList();

            trainingApi.CreateImagesFromFiles(project.Id, new ImageFileCreateBatch(imageFiles, new List <Guid>()
            {
                japaneseCherryTag.Id
            }));

            // <snippet_train>
            // Now there are images with tags start training the project
            Console.WriteLine("\tTraining");
            var iteration = trainingApi.TrainProject(project.Id);

            // The returned iteration will be in progress, and can be queried periodically to see when it has completed
            while (iteration.Status == "Training")
            {
                Thread.Sleep(1000);

                // Re-query the iteration to get it's updated status
                iteration = trainingApi.GetIteration(project.Id, iteration.Id);
            }

            // The iteration is now trained. Publish it to the prediction end point.
            var publishedModelName   = "treeClassModel";
            var predictionResourceId = "/subscriptions/a0980536-0ea6-4373-9e3a-abdce75f3c47/resourceGroups/SaftTechnologies/providers/Microsoft.CognitiveServices/accounts/stCustomVision-Prediction";

            trainingApi.PublishIteration(project.Id, iteration.Id, publishedModelName, predictionResourceId);
            Console.WriteLine("Done!\n");
            // </snippet_train>

            // Now there is a trained endpoint, it can be used to make a prediction

            // <snippet_prediction_endpoint>
            // Create a prediction endpoint, passing in obtained prediction key
            CustomVisionPredictionClient endpoint = new CustomVisionPredictionClient()
            {
                ApiKey   = predictionKey,
                Endpoint = ENDPOINT
            };

            // </snippet_prediction_endpoint>

            // <snippet_prediction>
            // Make a prediction against the new project
            Console.WriteLine("Making a prediction:");
            var result = endpoint.ClassifyImage(project.Id, publishedModelName, testImage);

            // Loop over each prediction and write out the results
            foreach (var c in result.Predictions)
            {
                Console.WriteLine($"\t{c.TagName}: {c.Probability:P1}");
            }
            Console.ReadKey();
            // </snippet_prediction>
        }
        static void Main(string[] args)
        {
            var trainingClient = new CustomVisionTrainingClient()
            {
                ApiKey   = TrainingKey,
                Endpoint = Endpoint
            };

            Console.WriteLine("Creating new project:");

            var project = trainingClient.CreateProject("Face-Detect");

            Console.WriteLine("Uploading Prayut images.");
            var prayutTag    = trainingClient.CreateTag(project.Id, "Prayut");
            var prayutImages = Directory.GetFiles(Path.Combine("Images", "Prayut"));
            var prayutFiles  = prayutImages.Select(img => new ImageFileCreateEntry(Path.GetFileName(img), File.ReadAllBytes(img))).ToList();

            trainingClient.CreateImagesFromFiles(project.Id, new ImageFileCreateBatch(prayutFiles, new List <Guid>()
            {
                prayutTag.Id
            }));
            Console.WriteLine("-> Done.");

            Console.WriteLine("Uploading Thaksin images.");
            var thaksinTag    = trainingClient.CreateTag(project.Id, "Thaksin");
            var thaksinImages = Directory.GetFiles(Path.Combine("Images", "thaksin"));
            var thaksinFiles  = thaksinImages.Select(img => new ImageFileCreateEntry(Path.GetFileName(img), File.ReadAllBytes(img))).ToList();

            trainingClient.CreateImagesFromFiles(project.Id, new ImageFileCreateBatch(thaksinFiles, new List <Guid>()
            {
                thaksinTag.Id
            }));
            Console.WriteLine("-> Done.");

            Console.WriteLine("Training.");
            var iteration = trainingClient.TrainProject(project.Id);

            while (iteration.Status == "Training")
            {
                Thread.Sleep(1000);
                iteration = trainingClient.GetIteration(project.Id, iteration.Id);
            }
            Console.WriteLine("-> Done.");

            Console.WriteLine("Publishing.");
            var publishedName = "GuessWho";

            trainingClient.PublishIteration(project.Id, iteration.Id, publishedName, PredictionResourceId);
            Console.WriteLine("-> Done.");

            Console.WriteLine("Making a prediction.");
            var predictionClient = new CustomVisionPredictionClient()
            {
                ApiKey   = PredictionKey,
                Endpoint = Endpoint
            };
            var testImage = new MemoryStream(File.ReadAllBytes(Path.Combine("Images", @"Test\Test.jpg")));
            var result    = predictionClient.ClassifyImage(project.Id, publishedName, testImage);

            foreach (var prediction in result.Predictions)
            {
                Console.WriteLine($"-> {prediction.TagName}: {prediction.Probability:P1}");
            }
            Console.WriteLine("-> Done.");

            Console.WriteLine("Deleting your project.");
            trainingClient.UnpublishIteration(project.Id, iteration.Id);
            trainingClient.DeleteIteration(project.Id, iteration.Id);
            trainingClient.DeleteProject(project.Id);
            Console.WriteLine("-> Done.");
        }
Пример #18
0
        private async void TakePicture()
        {
            AppState       = States.Processing;
            CountDown.Text = "Calculation...";

            CustomVisionPredictionClient endpoint = new CustomVisionPredictionClient()
            {
                ApiKey   = predictionKey,
                Endpoint = CustomVisionEndpoint
            };

            StringBuilder sb = new StringBuilder();

            using (var captureStream = new InMemoryRandomAccessStream())
            {
                await mediaCapture.CapturePhotoToStreamAsync(ImageEncodingProperties.CreateJpeg(), captureStream);

                captureStream.Seek(0);
                StorageFile destinationFile = await ApplicationData.Current.TemporaryFolder.CreateFileAsync($@"{Guid.NewGuid()}.jpg");

                try
                {
                    using (var destinationStream = (await destinationFile.OpenAsync(FileAccessMode.ReadWrite)).GetOutputStreamAt(0))
                    {
                        await RandomAccessStream.CopyAndCloseAsync(captureStream, destinationStream);
                    }
                }
                finally
                {
                    await destinationFile.DeleteAsync();
                }

                var stream = captureStream.AsStream();
                stream.Seek(0, SeekOrigin.Begin);

                // Make a prediction against the new project
                sb.Append("Prediction:\n");
                var predictions = new List <Prediction>();

                try
                {
                    Stopwatch sp = new Stopwatch();
                    sp.Start();
                    var result = endpoint.ClassifyImage(new System.Guid(projectId), iterationName, stream);

                    foreach (var c in result.Predictions)
                    {
                        predictions.Add(new Prediction(c));
                        sb.AppendFormat($"{c.TagName}: {c.Probability:P1}\n");
                    }

                    sb.AppendFormat($"Prediction took {sp.ElapsedMilliseconds}ms\n");
                    sp.Stop();
                }
                catch (Exception ex)
                {
                    sb.Append(ex.Message);
                }

                Output.Text = sb.ToString();

                if (predictions.Count > 0)
                {
                    var highestPrediction = (from p in predictions orderby p.Probability descending select p).First();

                    try
                    {
                        ImageColor.Fill = highestPrediction.GetColorCode();
                    }
                    catch (Exception) { }

                    try
                    {
                        ImagePreview.Source = highestPrediction.GetPicture();
                    }
                    catch (Exception) { }
                }
                else
                {
                    Output.Text = "No prediction possible";
                }

                CountDown.Text = countDown.ToString();
            }
            AppState = States.Waiting;
        }
Пример #19
0
        static void Main(string[] args)
        {
            // Add your Azure Custom Vision subscription key and endpoint to your environment variables.
            // <snippet_endpoint>
            string ENDPOINT = "https://southeastasia.api.cognitive.microsoft.com/";
            // </snippet_endpoint>

            // <snippet_keys>
            // Add your training & prediction key from the settings page of the portal
            string trainingKey   = "c48ec2b81a534659a5929f8688a3b169";
            string predictionKey = "c48ec2b81a534659a5929f8688a3b169";
            // </snippet_keys>

            // <snippet_create>
            // Create the Api, passing in the training key
            CustomVisionTrainingClient trainingApi = new CustomVisionTrainingClient()
            {
                ApiKey   = trainingKey,
                Endpoint = ENDPOINT
            };

            // Create a new project
            Console.WriteLine("Creating new project:");
            var project = trainingApi.CreateProject("My New Project");
            // </snippet_create>

            // <snippet_tags>
            // Make two tags in the new project
            var hemlockTag        = trainingApi.CreateTag(project.Id, "Hemlock");
            var japaneseCherryTag = trainingApi.CreateTag(project.Id, "Japanese Cherry");
            var butterflyTag      = trainingApi.CreateTag(project.Id, "butterfly");
            var catTag            = trainingApi.CreateTag(project.Id, "cat");

            // </snippet_tags>

            // <snippet_upload>
            // Add some images to the tags
            Console.WriteLine("\tUploading images");
            LoadImagesFromDisk();

            // Images can be uploaded one at a time
            foreach (var image in hemlockImages)
            {
                using (var stream = new MemoryStream(File.ReadAllBytes(image)))
                {
                    trainingApi.CreateImagesFromData(project.Id, stream, new List <Guid>()
                    {
                        hemlockTag.Id
                    });
                }
            }
            // </snippet_upload>

            // Or uploaded in a single batch
            var imageFiles = japaneseCherryImages.Select(img => new ImageFileCreateEntry(Path.GetFileName(img), File.ReadAllBytes(img))).ToList();

            trainingApi.CreateImagesFromFiles(project.Id, new ImageFileCreateBatch(imageFiles, new List <Guid>()
            {
                japaneseCherryTag.Id
            }));

            var imageFiles1 = butterflyImages.Select(img => new ImageFileCreateEntry(Path.GetFileName(img), File.ReadAllBytes(img))).ToList();

            trainingApi.CreateImagesFromFiles(project.Id, new ImageFileCreateBatch(imageFiles1, new List <Guid>()
            {
                butterflyTag.Id
            }));

            var imageFiles2 = catImages.Select(img => new ImageFileCreateEntry(Path.GetFileName(img), File.ReadAllBytes(img))).ToList();

            trainingApi.CreateImagesFromFiles(project.Id, new ImageFileCreateBatch(imageFiles2, new List <Guid>()
            {
                catTag.Id
            }));

            // <snippet_train>
            // Now there are images with tags start training the project
            Console.WriteLine("\tTraining");
            var iteration = trainingApi.TrainProject(project.Id);

            // The returned iteration will be in progress, and can be queried periodically to see when it has completed
            while (iteration.Status == "Training")
            {
                Thread.Sleep(1000);

                // Re-query the iteration to get it's updated status
                iteration = trainingApi.GetIteration(project.Id, iteration.Id);
            }

            // The iteration is now trained. Publish it to the prediction end point.
            var publishedModelName   = "treeClassModel";
            var predictionResourceId = "/subscriptions/453950b1-2d8e-4526-a905-6e7cfd88bae3/resourceGroups/EGCO313Lab/providers/Microsoft.CognitiveServices/accounts/egco313";

            trainingApi.PublishIteration(project.Id, iteration.Id, publishedModelName, predictionResourceId);
            Console.WriteLine("Done!\n");
            // </snippet_train>

            // Now there is a trained endpoint, it can be used to make a prediction

            // <snippet_prediction_endpoint>
            // Create a prediction endpoint, passing in obtained prediction key
            CustomVisionPredictionClient endpoint = new CustomVisionPredictionClient()
            {
                ApiKey   = predictionKey,
                Endpoint = ENDPOINT
            };

            // </snippet_prediction_endpoint>

            // <snippet_prediction>
            // Make a prediction against the new project
            Console.WriteLine("Making a prediction:");
            var result = endpoint.ClassifyImage(project.Id, publishedModelName, testImage);

            // Loop over each prediction and write out the results
            foreach (var c in result.Predictions)
            {
                Console.WriteLine($"\t{c.TagName}: {c.Probability:P1}");
            }
            Console.ReadKey();
            // </snippet_prediction>
        }