Пример #1
0
        protected internal static Cipher InitCipherForBlock(Cipher cipher, int block,
                                                            IEncryptionInfoBuilder builder, ISecretKey skey, int encryptMode)
        {
            EncryptionVerifier ver      = builder.GetVerifier();
            HashAlgorithm      hashAlgo = ver.HashAlgorithm;

            byte[] blockKey = new byte[4];
            LittleEndian.PutUInt(blockKey, 0, block);
            MessageDigest hashAlg = CryptoFunctions.GetMessageDigest(hashAlgo);

            hashAlg.Update(skey.GetEncoded());
            byte[]           encKey = hashAlg.Digest(blockKey);
            EncryptionHeader header = builder.GetHeader();
            int keyBits             = header.KeySize;

            encKey = CryptoFunctions.GetBlock0(encKey, keyBits / 8);
            if (keyBits == 40)
            {
                encKey = CryptoFunctions.GetBlock0(encKey, 16);
            }
            ISecretKey key = new SecretKeySpec(encKey, skey.GetAlgorithm());

            if (cipher == null)
            {
                cipher = CryptoFunctions.GetCipher(key, header.CipherAlgorithm, null, null, encryptMode);
            }
            else
            {
                cipher.Init(encryptMode, key);
            }
            return(cipher);
        }
Пример #2
0
        protected internal static byte[] hashInput(IEncryptionInfoBuilder builder, byte[] pwHash, byte[] blockKey, byte[] inputKey, int cipherMode)
        {
            EncryptionVerifier ver  = builder.GetVerifier();
            AgileDecryptor     dec  = (AgileDecryptor)builder.GetDecryptor();
            int           keySize   = dec.GetKeySizeInBytes();
            int           blockSize = dec.GetBlockSizeInBytes();
            HashAlgorithm hashAlgo  = ver.HashAlgorithm;

            byte[] salt = ver.Salt;

            byte[]     intermedKey = CryptoFunctions.GenerateKey(pwHash, hashAlgo, blockKey, keySize);
            ISecretKey skey        = new SecretKeySpec(intermedKey, ver.CipherAlgorithm.jceId);

            byte[] iv     = CryptoFunctions.GenerateIv(hashAlgo, salt, null, blockSize);
            Cipher cipher = CryptoFunctions.GetCipher(skey, ver.CipherAlgorithm, ver.ChainingMode, iv, cipherMode);

            byte[] hashFinal;

            try {
                inputKey  = CryptoFunctions.GetBlock0(inputKey, GetNextBlockSize(inputKey.Length, blockSize));
                hashFinal = cipher.DoFinal(inputKey);
                return(hashFinal);
            } catch (Exception e) {
                throw new EncryptedDocumentException(e);
            }
        }
Пример #3
0
        /**
         * instead of a password, it's also possible to decrypt via certificate.
         * Warning: this code is experimental and hasn't been validated
         *
         * @see <a href="http://social.msdn.microsoft.com/Forums/en-US/cc9092bb-0c82-4b5b-ae21-abf643bdb37c/agile-encryption-with-certificates">Agile encryption with certificates</a>
         *
         * @param keyPair
         * @param x509
         * @return true, when the data can be successfully decrypted with the given private key
         * @throws GeneralSecurityException
         */
        public bool VerifyPassword(KeyPair keyPair, X509Certificate x509)
        {
            AgileEncryptionVerifier ver        = (AgileEncryptionVerifier)builder.GetVerifier();
            AgileEncryptionHeader   header     = (AgileEncryptionHeader)builder.GetHeader();
            HashAlgorithm           hashAlgo   = header.HashAlgorithm;
            CipherAlgorithm         cipherAlgo = header.CipherAlgorithm;
            int blockSize = header.BlockSize;

            AgileEncryptionVerifier.AgileCertificateEntry ace = null;
            foreach (AgileEncryptionVerifier.AgileCertificateEntry aceEntry in ver.GetCertificates())
            {
                if (x509.Equals(aceEntry.x509))
                {
                    ace = aceEntry;
                    break;
                }
            }
            if (ace == null)
            {
                return(false);
            }

            Cipher cipher = Cipher.GetInstance("RSA");

            cipher.Init(Cipher.DECRYPT_MODE, keyPair.getPrivate());
            byte[]        keyspec   = cipher.DoFinal(ace.encryptedKey);
            SecretKeySpec secretKey = new SecretKeySpec(keyspec, ver.CipherAlgorithm.jceId);

            CryptoFunctions.Mac x509Hmac = CryptoFunctions.GetMac(hashAlgo);
            x509Hmac.Init(secretKey);
            byte[] certVerifier = x509Hmac.DoFinal(ace.x509.GetEncoded());

            byte[] vec = CryptoFunctions.GenerateIv(hashAlgo, header.KeySalt, kIntegrityKeyBlock, blockSize);
            cipher = CryptoFunctions.GetCipher(secretKey, cipherAlgo, ver.ChainingMode, vec, Cipher.DECRYPT_MODE);
            byte[] hmacKey = cipher.DoFinal(header.GetEncryptedHmacKey());
            hmacKey = CryptoFunctions.GetBlock0(hmacKey, hashAlgo.hashSize);

            vec    = CryptoFunctions.GenerateIv(hashAlgo, header.KeySalt, kIntegrityValueBlock, blockSize);
            cipher = CryptoFunctions.GetCipher(secretKey, cipherAlgo, ver.ChainingMode, vec, Cipher.DECRYPT_MODE);
            byte[] hmacValue = cipher.DoFinal(header.GetEncryptedHmacValue());
            hmacValue = CryptoFunctions.GetBlock0(hmacValue, hashAlgo.hashSize);


            if (Arrays.Equals(ace.certVerifier, certVerifier))
            {
                SetSecretKey(secretKey);
                SetIntegrityHmacKey(hmacKey);
                SetIntegrityHmacValue(hmacValue);
                return(true);
            }
            else
            {
                return(false);
            }
        }
Пример #4
0
        /**
         * Generate an HMAC, as specified in [RFC2104], of the encrypted form of the data (message),
         * which the DataIntegrity element will verify by using the Salt generated in step 2 as the key.
         * Note that the entire EncryptedPackage stream (1), including the StreamSize field, MUST be
         * used as the message.
         *
         * Encrypt the HMAC as in step 3 by using a blockKey byte array consisting of the following bytes:
         * 0xa0, 0x67, 0x7f, 0x02, 0xb2, 0x2c, 0x84, and 0x33.
         **/
        protected void UpdateIntegrityHMAC(FileInfo tmpFile, int oleStreamSize)
        {
            // as the integrity hmac needs to contain the StreamSize,
            // it's not possible to calculate it on-the-fly while buffering
            // TODO: add stream size parameter to GetDataStream()
            AgileEncryptionVerifier ver      = builder.GetVerifier();
            HashAlgorithm           hashAlgo = ver.HashAlgorithm;

            CryptoFunctions.Mac integrityMD = CryptoFunctions.GetMac(hashAlgo);
            integrityMD.Init(new SecretKeySpec(integritySalt, hashAlgo.jceHmacId));

            byte[] buf = new byte[1024];
            LittleEndian.PutLong(buf, 0, oleStreamSize);
            integrityMD.Update(buf, 0, LittleEndian.LONG_SIZE);

            FileStream fis = tmpFile.Create();

            try {
                int readBytes;
                while ((readBytes = fis.Read(buf, 0, buf.Length)) > 0)
                {
                    integrityMD.Update(buf, 0, readBytes);
                }
            } finally {
                fis.Close();
            }

            byte[] hmacValue = integrityMD.DoFinal();

            AgileEncryptionHeader header = builder.GetHeader();
            int blockSize = header.BlockSize;

            byte[] iv     = CryptoFunctions.GenerateIv(header.HashAlgorithm, header.KeySalt, AgileDecryptor.kIntegrityValueBlock, blockSize);
            Cipher cipher = CryptoFunctions.GetCipher(GetSecretKey(), header.CipherAlgorithm, header.ChainingMode, iv, Cipher.ENCRYPT_MODE);

            byte[] hmacValueFilled    = CryptoFunctions.GetBlock0(hmacValue, AgileDecryptor.GetNextBlockSize(hmacValue.Length, blockSize));
            byte[] encryptedHmacValue = cipher.DoFinal(hmacValueFilled);

            header.SetEncryptedHmacValue(encryptedHmacValue);
        }
Пример #5
0
        /**
         * Set decryption password
         */
        public override bool VerifyPassword(String password)
        {
            AgileEncryptionVerifier ver        = (AgileEncryptionVerifier)builder.GetVerifier();
            AgileEncryptionHeader   header     = (AgileEncryptionHeader)builder.GetHeader();
            HashAlgorithm           hashAlgo   = header.HashAlgorithm;
            CipherAlgorithm         cipherAlgo = header.CipherAlgorithm;
            int blockSize = header.BlockSize;
            int keySize   = header.KeySize / 8;

            byte[] pwHash = CryptoFunctions.HashPassword(password, ver.HashAlgorithm, ver.Salt, ver.SpinCount);

            /**
             * encryptedVerifierHashInput: This attribute MUST be generated by using the following steps:
             * 1. Generate a random array of bytes with the number of bytes used specified by the saltSize
             *    attribute.
             * 2. Generate an encryption key as specified in section 2.3.4.11 by using the user-supplied password,
             *    the binary byte array used to create the saltValue attribute, and a blockKey byte array
             *    consisting of the following bytes: 0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, and 0x79.
             * 3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
             *    attribute as an Initialization vector as specified in section 2.3.4.12. If the array of bytes is not an
             *    integral multiple of blockSize bytes, pad the array with 0x00 to the next integral multiple of
             *    blockSize bytes.
             * 4. Use base64 to encode the result of step 3.
             */
            byte[] verfierInputEnc = hashInput(builder, pwHash, kVerifierInputBlock, ver.EncryptedVerifier, Cipher.DECRYPT_MODE);
            SetVerifier(verfierInputEnc);
            MessageDigest hashMD = CryptoFunctions.GetMessageDigest(hashAlgo);

            byte[] verifierHash = hashMD.Digest(verfierInputEnc);

            /**
             * encryptedVerifierHashValue: This attribute MUST be generated by using the following steps:
             * 1. Obtain the hash value of the random array of bytes generated in step 1 of the steps for
             *    encryptedVerifierHashInput.
             * 2. Generate an encryption key as specified in section 2.3.4.11 by using the user-supplied password,
             *    the binary byte array used to create the saltValue attribute, and a blockKey byte array
             *    consisting of the following bytes: 0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, and 0x4e.
             * 3. Encrypt the hash value obtained in step 1 by using the binary form of the saltValue attribute as
             *    an Initialization vector as specified in section 2.3.4.12. If hashSize is not an integral multiple of
             *    blockSize bytes, pad the hash value with 0x00 to an integral multiple of blockSize bytes.
             * 4. Use base64 to encode the result of step 3.
             */
            byte[] verifierHashDec = hashInput(builder, pwHash, kHashedVerifierBlock, ver.EncryptedVerifierHash, Cipher.DECRYPT_MODE);
            verifierHashDec = CryptoFunctions.GetBlock0(verifierHashDec, hashAlgo.hashSize);

            /**
             * encryptedKeyValue: This attribute MUST be generated by using the following steps:
             * 1. Generate a random array of bytes that is the same size as specified by the
             *    Encryptor.KeyData.keyBits attribute of the parent element.
             * 2. Generate an encryption key as specified in section 2.3.4.11, using the user-supplied password,
             *    the binary byte array used to create the saltValue attribute, and a blockKey byte array
             *    consisting of the following bytes: 0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, and 0xd6.
             * 3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
             *    attribute as an Initialization vector as specified in section 2.3.4.12. If the array of bytes is not an
             *    integral multiple of blockSize bytes, pad the array with 0x00 to an integral multiple of
             *    blockSize bytes.
             * 4. Use base64 to encode the result of step 3.
             */
            byte[] keyspec = hashInput(builder, pwHash, kCryptoKeyBlock, ver.EncryptedKey, Cipher.DECRYPT_MODE);
            keyspec = CryptoFunctions.GetBlock0(keyspec, keySize);
            SecretKeySpec secretKey = new SecretKeySpec(keyspec, ver.CipherAlgorithm.jceId);

            /**
             * 1. Obtain the intermediate key by decrypting the encryptedKeyValue from a KeyEncryptor
             *    Contained within the KeyEncryptors sequence. Use this key for encryption operations in the
             *    remaining steps of this section.
             * 2. Generate a random array of bytes, known as Salt, of the same length as the value of the
             *    KeyData.HashSize attribute.
             * 3. Encrypt the random array of bytes generated in step 2 by using the binary form of the
             *    KeyData.saltValue attribute and a blockKey byte array consisting of the following bytes: 0x5f,
             *    0xb2, 0xad, 0x01, 0x0c, 0xb9, 0xe1, and 0xf6 used to form an Initialization vector as specified in
             *    section 2.3.4.12. If the array of bytes is not an integral multiple of blockSize bytes, pad the
             *    array with 0x00 to the next integral multiple of blockSize bytes.
             * 4. Assign the encryptedHmacKey attribute to the base64-encoded form of the result of step 3.
             */
            byte[] vec    = CryptoFunctions.GenerateIv(hashAlgo, header.KeySalt, kIntegrityKeyBlock, blockSize);
            Cipher cipher = CryptoFunctions.GetCipher(secretKey, cipherAlgo, ver.ChainingMode, vec, Cipher.DECRYPT_MODE);

            byte[] hmacKey = cipher.DoFinal(header.GetEncryptedHmacKey());
            hmacKey = CryptoFunctions.GetBlock0(hmacKey, hashAlgo.hashSize);

            /**
             * 5. Generate an HMAC, as specified in [RFC2104], of the encrypted form of the data (message),
             *    which the DataIntegrity element will verify by using the Salt generated in step 2 as the key.
             *    Note that the entire EncryptedPackage stream (1), including the StreamSize field, MUST be
             *    used as the message.
             * 6. Encrypt the HMAC as in step 3 by using a blockKey byte array consisting of the following bytes:
             *    0xa0, 0x67, 0x7f, 0x02, 0xb2, 0x2c, 0x84, and 0x33.
             * 7. Assign the encryptedHmacValue attribute to the base64-encoded form of the result of step 6.
             */
            vec    = CryptoFunctions.GenerateIv(hashAlgo, header.KeySalt, kIntegrityValueBlock, blockSize);
            cipher = CryptoFunctions.GetCipher(secretKey, cipherAlgo, ver.ChainingMode, vec, Cipher.DECRYPT_MODE);
            byte[] hmacValue = cipher.DoFinal(header.GetEncryptedHmacValue());
            hmacValue = CryptoFunctions.GetBlock0(hmacValue, hashAlgo.hashSize);

            if (Arrays.Equals(verifierHashDec, verifierHash))
            {
                SetSecretKey(secretKey);
                SetIntegrityHmacKey(hmacKey);
                SetIntegrityHmacValue(hmacValue);
                return(true);
            }
            else
            {
                return(false);
            }
        }
Пример #6
0
        public override void ConfirmPassword(String password, byte[] keySpec, byte[] keySalt, byte[] verifier, byte[] verifierSalt, byte[] integritySalt)
        {
            AgileEncryptionVerifier ver = builder.GetVerifier();

            ver.Salt = (/*setter*/ verifierSalt);
            AgileEncryptionHeader header = builder.GetHeader();

            header.KeySalt = (/*setter*/ keySalt);
            HashAlgorithm hashAlgo = ver.HashAlgorithm;

            int blockSize = header.BlockSize;

            pwHash = CryptoFunctions.HashPassword(password, hashAlgo, verifierSalt, ver.SpinCount);

            /**
             * encryptedVerifierHashInput: This attribute MUST be generated by using the following steps:
             * 1. Generate a random array of bytes with the number of bytes used specified by the saltSize
             *    attribute.
             * 2. Generate an encryption key as specified in section 2.3.4.11 by using the user-supplied password,
             *    the binary byte array used to create the saltValue attribute, and a blockKey byte array
             *    consisting of the following bytes: 0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, and 0x79.
             * 3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
             *    attribute as an Initialization vector as specified in section 2.3.4.12. If the array of bytes is not an
             *    integral multiple of blockSize bytes, pad the array with 0x00 to the next integral multiple of
             *    blockSize bytes.
             * 4. Use base64 to encode the result of step 3.
             */
            byte[] encryptedVerifier = AgileDecryptor.hashInput(builder, pwHash, AgileDecryptor.kVerifierInputBlock, verifier, Cipher.ENCRYPT_MODE);
            ver.EncryptedVerifier = (/*setter*/ encryptedVerifier);


            /**
             * encryptedVerifierHashValue: This attribute MUST be generated by using the following steps:
             * 1. Obtain the hash value of the random array of bytes generated in step 1 of the steps for
             *    encryptedVerifierHashInput.
             * 2. Generate an encryption key as specified in section 2.3.4.11 by using the user-supplied password,
             *    the binary byte array used to create the saltValue attribute, and a blockKey byte array
             *    consisting of the following bytes: 0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, and 0x4e.
             * 3. Encrypt the hash value obtained in step 1 by using the binary form of the saltValue attribute as
             *    an Initialization vector as specified in section 2.3.4.12. If hashSize is not an integral multiple of
             *    blockSize bytes, pad the hash value with 0x00 to an integral multiple of blockSize bytes.
             * 4. Use base64 to encode the result of step 3.
             */
            MessageDigest hashMD = CryptoFunctions.GetMessageDigest(hashAlgo);

            byte[] hashedVerifier        = hashMD.Digest(verifier);
            byte[] encryptedVerifierHash = AgileDecryptor.hashInput(builder, pwHash, AgileDecryptor.kHashedVerifierBlock, hashedVerifier, Cipher.ENCRYPT_MODE);
            ver.EncryptedVerifierHash = (/*setter*/ encryptedVerifierHash);

            /**
             * encryptedKeyValue: This attribute MUST be generated by using the following steps:
             * 1. Generate a random array of bytes that is the same size as specified by the
             *    Encryptor.KeyData.keyBits attribute of the parent element.
             * 2. Generate an encryption key as specified in section 2.3.4.11, using the user-supplied password,
             *    the binary byte array used to create the saltValue attribute, and a blockKey byte array
             *    consisting of the following bytes: 0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, and 0xd6.
             * 3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
             *    attribute as an Initialization vector as specified in section 2.3.4.12. If the array of bytes is not an
             *    integral multiple of blockSize bytes, pad the array with 0x00 to an integral multiple of
             *    blockSize bytes.
             * 4. Use base64 to encode the result of step 3.
             */
            byte[] encryptedKey = AgileDecryptor.hashInput(builder, pwHash, AgileDecryptor.kCryptoKeyBlock, keySpec, Cipher.ENCRYPT_MODE);
            ver.EncryptedKey = (/*setter*/ encryptedKey);

            ISecretKey secretKey = new SecretKeySpec(keySpec, ver.CipherAlgorithm.jceId);

            SetSecretKey(secretKey);

            /*
             * 2.3.4.14 DataIntegrity Generation (Agile Encryption)
             *
             * The DataIntegrity element Contained within an Encryption element MUST be generated by using
             * the following steps:
             * 1. Obtain the intermediate key by decrypting the encryptedKeyValue from a KeyEncryptor
             *    Contained within the KeyEncryptors sequence. Use this key for encryption operations in the
             *    remaining steps of this section.
             * 2. Generate a random array of bytes, known as Salt, of the same length as the value of the
             *    KeyData.HashSize attribute.
             * 3. Encrypt the random array of bytes generated in step 2 by using the binary form of the
             *    KeyData.saltValue attribute and a blockKey byte array consisting of the following bytes:
             *    0x5f, 0xb2, 0xad, 0x01, 0x0c, 0xb9, 0xe1, and 0xf6 used to form an Initialization vector as
             *    specified in section 2.3.4.12. If the array of bytes is not an integral multiple of blockSize
             *    bytes, pad the array with 0x00 to the next integral multiple of blockSize bytes.
             * 4. Assign the encryptedHmacKey attribute to the base64-encoded form of the result of step 3.
             * 5. Generate an HMAC, as specified in [RFC2104], of the encrypted form of the data (message),
             *    which the DataIntegrity element will verify by using the Salt generated in step 2 as the key.
             *    Note that the entire EncryptedPackage stream (1), including the StreamSize field, MUST be
             *    used as the message.
             * 6. Encrypt the HMAC as in step 3 by using a blockKey byte array consisting of the following bytes:
             *    0xa0, 0x67, 0x7f, 0x02, 0xb2, 0x2c, 0x84, and 0x33.
             * 7.  Assign the encryptedHmacValue attribute to the base64-encoded form of the result of step 6.
             */
            this.integritySalt = integritySalt;

            try {
                byte[] vec              = CryptoFunctions.GenerateIv(hashAlgo, header.KeySalt, AgileDecryptor.kIntegrityKeyBlock, header.BlockSize);
                Cipher cipher           = CryptoFunctions.GetCipher(secretKey, ver.CipherAlgorithm, ver.ChainingMode, vec, Cipher.ENCRYPT_MODE);
                byte[] FilledSalt       = CryptoFunctions.GetBlock0(integritySalt, AgileDecryptor.GetNextBlockSize(integritySalt.Length, blockSize));
                byte[] encryptedHmacKey = cipher.DoFinal(FilledSalt);
                header.SetEncryptedHmacKey(encryptedHmacKey);

                cipher = Cipher.GetInstance("RSA");
                foreach (AgileEncryptionVerifier.AgileCertificateEntry ace in ver.GetCertificates())
                {
                    cipher.Init(Cipher.ENCRYPT_MODE, ace.x509.GetPublicKey());
                    ace.encryptedKey = cipher.DoFinal(GetSecretKey().GetEncoded());
                    CryptoFunctions.Mac x509Hmac = CryptoFunctions.GetMac(hashAlgo);
                    x509Hmac.Init(GetSecretKey());
                    ace.certVerifier = x509Hmac.DoFinal(ace.x509.GetEncoded());
                }
            } catch (Exception e) {
                throw new EncryptedDocumentException(e);
            }
        }