public void SupportVectorMachinePerformanceTest() { ex = null; var cv = new CrossValidation(); cv.Algorithm = new SupportVectorRegression(); var rand = new HeuristicLab.Random.MersenneTwister(); double[,] data = GenerateData(1000, rand); List<string> variables = new List<string>() { "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "y" }; Dataset ds = new Dataset(variables, data); cv.Problem.ProblemDataParameter.ActualValue = new RegressionProblemData(ds, variables.Take(10), variables.Last()); cv.Folds.Value = 5; cv.SamplesStart.Value = 0; cv.SamplesEnd.Value = 999; cv.ExceptionOccurred += new EventHandler<EventArgs<Exception>>(cv_ExceptionOccurred); cv.Stopped += new EventHandler(cv_Stopped); cv.Prepare(); cv.Start(); trigger.WaitOne(); if (ex != null) throw ex; TestContext.WriteLine("Runtime: {0}", cv.ExecutionTime.ToString()); }
public void SupportVectorMachinePerformanceTest() { ex = null; var cv = new CrossValidation(); cv.Algorithm = new SupportVectorRegression(); var rand = new HeuristicLab.Random.MersenneTwister(); double[,] data = GenerateData(1000, rand); List <string> variables = new List <string>() { "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "y" }; Dataset ds = new Dataset(variables, data); cv.Problem.ProblemDataParameter.ActualValue = new RegressionProblemData(ds, variables.Take(10), variables.Last()); cv.Folds.Value = 5; cv.SamplesStart.Value = 0; cv.SamplesEnd.Value = 999; cv.ExceptionOccurred += new EventHandler <EventArgs <Exception> >(cv_ExceptionOccurred); cv.Prepare(); cv.Start(); if (ex != null) { throw ex; } TestContext.WriteLine("Runtime: {0}", cv.ExecutionTime.ToString()); }