Пример #1
0
        public static libTechCollisionShape FromVertices(IEnumerable <Vector3> Verts)
        {
            ConvexHullShape HullShape = new ConvexHullShape(Verts);

            HullShape.InitializePolyhedralFeatures();
            return(new libTechCollisionShape(HullShape));
        }
Пример #2
0
 private ConvexHullShape CreateHullApproximation(TriangleMesh triangleMesh)
 {
     using (var tmpConvexShape = new ConvexTriangleMeshShape(triangleMesh))
     {
         using (var hull = new ShapeHull(tmpConvexShape))
         {
             hull.BuildHull(tmpConvexShape.Margin);
             var convexShape = new ConvexHullShape(hull.Vertices);
             if (_enableSat)
             {
                 convexShape.InitializePolyhedralFeatures();
             }
             return(convexShape);
         }
     }
 }
Пример #3
0
        private void CreateTaruStack()
        {
            CreateGround();

            const float mass               = 2.0f;
            const int   arrayWidth         = 8;
            const int   arrayHeight        = 15;
            const float offset             = 5;
            const float widthSpacingFactor = 1.02f;
            var         startPosition      = new Vector3(-30, 0, -10);
            var         convexHullShape    = new ConvexHullShape(Taru.Vertices);

            //this will enable polyhedral contact clipping, better quality, slightly slower
            convexHullShape.InitializePolyhedralFeatures();

            CreateStack(startPosition, arrayWidth, arrayHeight, arrayWidth, offset,
                        widthSpacingFactor, mass, convexHullShape);
        }
Пример #4
0
        public override void ConvexDecompResult(ConvexResult result)
        {
            TriangleMesh trimesh = new TriangleMesh();

            demo.trimeshes.Add(trimesh);

            Vector3 localScaling = new Vector3(6.0f, 6.0f, 6.0f);

            if (output == null)
            {
                return;
            }

            output.WriteLine("## Hull Piece {0} with {1} vertices and {2} triangles.", mHullCount, result.mHullVertices.Length, result.mHullIndices.Length / 3);

            output.WriteLine("usemtl Material{0}", mBaseCount);
            output.WriteLine("o Object{0}", mBaseCount);

            foreach (Vector3 p in result.mHullVertices)
            {
                output.WriteLine(string.Format(floatFormat, "v {0:F9} {1:F9} {2:F9}", p.X, p.Y, p.Z));
            }

            //calc centroid, to shift vertices around center of mass
            demo.centroid = Vector3.Zero;

            AlignedVector3Array vertices = new AlignedVector3Array();

            if (true)
            {
                foreach (Vector3 vertex in result.mHullVertices)
                {
                    demo.centroid += vertex * localScaling;
                }
            }

            demo.centroid /= (float)result.mHullVertices.Length;

            if (true)
            {
                foreach (Vector3 vertex in result.mHullVertices)
                {
                    vertices.Add(vertex * localScaling - demo.centroid);
                }
            }

            if (true)
            {
                int[] src = result.mHullIndices;
                for (int i = 0; i < src.Length; i += 3)
                {
                    int index0 = src[i];
                    int index1 = src[i + 1];
                    int index2 = src[i + 2];


                    Vector3 vertex0 = result.mHullVertices[index0] * localScaling - demo.centroid;
                    Vector3 vertex1 = result.mHullVertices[index1] * localScaling - demo.centroid;
                    Vector3 vertex2 = result.mHullVertices[index2] * localScaling - demo.centroid;

                    trimesh.AddTriangle(vertex0, vertex1, vertex2);

                    index0 += mBaseCount;
                    index1 += mBaseCount;
                    index2 += mBaseCount;

                    output.WriteLine("f {0} {1} {2}", index0 + 1, index1 + 1, index2 + 1);
                }
            }

            //this is a tools issue: due to collision margin, convex objects overlap, compensate for it here:
            //#define SHRINK_OBJECT_INWARDS 1
#if SHRINK_OBJECT_INWARDS
            float collisionMargin = 0.01f;

            btAlignedObjectArray <btVector3> planeEquations;
            btGeometryUtil::getPlaneEquationsFromVertices(vertices, planeEquations);

            btAlignedObjectArray <btVector3> shiftedPlaneEquations;
            for (int p = 0; p < planeEquations.size(); p++)
            {
                btVector3 plane = planeEquations[p];
                plane[3] += collisionMargin;
                shiftedPlaneEquations.push_back(plane);
            }
            btAlignedObjectArray <btVector3> shiftedVertices;
            btGeometryUtil::getVerticesFromPlaneEquations(shiftedPlaneEquations, shiftedVertices);


            btConvexHullShape *convexShape = new btConvexHullShape(&(shiftedVertices[0].getX()), shiftedVertices.size());
#else //SHRINK_OBJECT_INWARDS
            ConvexHullShape convexShape = new ConvexHullShape(vertices);
#endif

            if (demo.sEnableSAT)
            {
                convexShape.InitializePolyhedralFeatures();
            }
            convexShape.Margin = 0.01f;
            convexShapes.Add(convexShape);
            convexCentroids.Add(demo.centroid);
            demo.CollisionShapes.Add(convexShape);
            mBaseCount += result.mHullVertices.Length; // advance the 'base index' counter.
        }
Пример #5
0
        protected override void OnInitializePhysics()
        {
            ManifoldPoint.ContactAdded += MyContactCallback;

            SetupEmptyDynamicsWorld();

            WavefrontObj wo     = new WavefrontObj();
            int          tcount = wo.LoadObj("data/file.obj");

            if (tcount > 0)
            {
                TriangleMesh trimesh = new TriangleMesh();
                trimeshes.Add(trimesh);

                Vector3        localScaling = new Vector3(6, 6, 6);
                List <int>     indices      = wo.Indices;
                List <Vector3> vertices     = wo.Vertices;

                int i;
                for (i = 0; i < tcount; i++)
                {
                    int index0 = indices[i * 3];
                    int index1 = indices[i * 3 + 1];
                    int index2 = indices[i * 3 + 2];

                    Vector3 vertex0 = vertices[index0] * localScaling;
                    Vector3 vertex1 = vertices[index1] * localScaling;
                    Vector3 vertex2 = vertices[index2] * localScaling;

                    trimesh.AddTriangle(vertex0, vertex1, vertex2);
                }

                ConvexShape tmpConvexShape = new ConvexTriangleMeshShape(trimesh);

                //create a hull approximation
                ShapeHull hull   = new ShapeHull(tmpConvexShape);
                float     margin = tmpConvexShape.Margin;
                hull.BuildHull(margin);
                tmpConvexShape.UserObject = hull;

                ConvexHullShape convexShape = new ConvexHullShape();
                foreach (Vector3 v in hull.Vertices)
                {
                    convexShape.AddPoint(v);
                }

                if (sEnableSAT)
                {
                    convexShape.InitializePolyhedralFeatures();
                }
                tmpConvexShape.Dispose();
                //hull.Dispose();


                CollisionShapes.Add(convexShape);

                float mass = 1.0f;

                LocalCreateRigidBody(mass, Matrix.Translation(0, 2, 14), convexShape);

                const bool     useQuantization = true;
                CollisionShape concaveShape    = new BvhTriangleMeshShape(trimesh, useQuantization);
                LocalCreateRigidBody(0, Matrix.Translation(convexDecompositionObjectOffset), concaveShape);

                CollisionShapes.Add(concaveShape);


                // Bullet Convex Decomposition

                FileStream   outputFile = new FileStream("file_convex.obj", FileMode.Create, FileAccess.Write);
                StreamWriter writer     = new StreamWriter(outputFile);

                DecompDesc desc = new DecompDesc
                {
                    mVertices    = wo.Vertices.ToArray(),
                    mTcount      = tcount,
                    mIndices     = wo.Indices.ToArray(),
                    mDepth       = 5,
                    mCpercent    = 5,
                    mPpercent    = 15,
                    mMaxVertices = 16,
                    mSkinWidth   = 0.0f
                };

                MyConvexDecomposition convexDecomposition = new MyConvexDecomposition(writer, this);
                desc.mCallback = convexDecomposition;


                // HACD

                Hacd myHACD = new Hacd();
                myHACD.SetPoints(wo.Vertices);
                myHACD.SetTriangles(wo.Indices);
                myHACD.CompacityWeight = 0.1;
                myHACD.VolumeWeight    = 0.0;

                // HACD parameters
                // Recommended parameters: 2 100 0 0 0 0
                int          nClusters = 2;
                const double concavity = 100;
                //bool invert = false;
                const bool addExtraDistPoints      = false;
                const bool addNeighboursDistPoints = false;
                const bool addFacesPoints          = false;

                myHACD.NClusters               = nClusters;       // minimum number of clusters
                myHACD.VerticesPerConvexHull   = 100;             // max of 100 vertices per convex-hull
                myHACD.Concavity               = concavity;       // maximum concavity
                myHACD.AddExtraDistPoints      = addExtraDistPoints;
                myHACD.AddNeighboursDistPoints = addNeighboursDistPoints;
                myHACD.AddFacesPoints          = addFacesPoints;

                myHACD.Compute();
                nClusters = myHACD.NClusters;

                myHACD.Save("output.wrl", false);


                if (true)
                {
                    CompoundShape compound = new CompoundShape();
                    CollisionShapes.Add(compound);

                    Matrix trans = Matrix.Identity;

                    for (int c = 0; c < nClusters; c++)
                    {
                        //generate convex result
                        Vector3[] points;
                        int[]     triangles;
                        myHACD.GetCH(c, out points, out triangles);

                        ConvexResult r = new ConvexResult(points, triangles);
                        convexDecomposition.ConvexDecompResult(r);
                    }

                    for (i = 0; i < convexDecomposition.convexShapes.Count; i++)
                    {
                        Vector3 centroid = convexDecomposition.convexCentroids[i];
                        trans = Matrix.Translation(centroid);
                        ConvexHullShape convexShape2 = convexDecomposition.convexShapes[i] as ConvexHullShape;
                        compound.AddChildShape(trans, convexShape2);

                        RigidBody body = LocalCreateRigidBody(1.0f, trans, convexShape2);
                    }

#if true
                    mass  = 10.0f;
                    trans = Matrix.Translation(-convexDecompositionObjectOffset);
                    RigidBody body2 = LocalCreateRigidBody(mass, trans, compound);
                    body2.CollisionFlags |= CollisionFlags.CustomMaterialCallback;

                    convexDecompositionObjectOffset.Z = 6;
                    trans = Matrix.Translation(-convexDecompositionObjectOffset);
                    body2 = LocalCreateRigidBody(mass, trans, compound);
                    body2.CollisionFlags |= CollisionFlags.CustomMaterialCallback;

                    convexDecompositionObjectOffset.Z = -6;
                    trans = Matrix.Translation(-convexDecompositionObjectOffset);
                    body2 = LocalCreateRigidBody(mass, trans, compound);
                    body2.CollisionFlags |= CollisionFlags.CustomMaterialCallback;
#endif
                }

                writer.Dispose();
                outputFile.Dispose();
            }
        }
        protected override void OnInitializePhysics()
        {
            // collision configuration contains default setup for memory, collision setup
            DefaultCollisionConstructionInfo cci = new DefaultCollisionConstructionInfo();

            cci.DefaultMaxPersistentManifoldPoolSize = 32768;
            CollisionConf = new DefaultCollisionConfiguration(cci);

            Dispatcher = new CollisionDispatcher(CollisionConf);
            Dispatcher.DispatcherFlags = DispatcherFlags.DisableContactPoolDynamicAllocation;

            // the maximum size of the collision world. Make sure objects stay within these boundaries
            // Don't make the world AABB size too large, it will harm simulation quality and performance
            Vector3 worldAabbMin = new Vector3(-1000, -1000, -1000);
            Vector3 worldAabbMax = new Vector3(1000, 1000, 1000);

            HashedOverlappingPairCache pairCache = new HashedOverlappingPairCache();

            Broadphase = new AxisSweep3(worldAabbMin, worldAabbMax, 3500, pairCache);
            //Broadphase = new DbvtBroadphase();

            Solver = new SequentialImpulseConstraintSolver();

            World         = new DiscreteDynamicsWorld(Dispatcher, Broadphase, Solver, CollisionConf);
            World.Gravity = new Vector3(0, -10, 0);
            World.SolverInfo.SolverMode   |= SolverModes.EnableFrictionDirectionCaching;
            World.SolverInfo.NumIterations = 5;

            if (benchmark < 5)
            {
                // create the ground
                CollisionShape groundShape = new BoxShape(250, 50, 250);
                CollisionShapes.Add(groundShape);
                CollisionObject ground = base.LocalCreateRigidBody(0, Matrix.Translation(0, -50, 0), groundShape);
                ground.UserObject = "Ground";
            }

            float   cubeSize = 1.0f;
            float   spacing  = cubeSize;
            float   mass     = 1.0f;
            int     size     = 8;
            Vector3 pos      = new Vector3(0.0f, cubeSize * 2, 0.0f);
            float   offset   = -size * (cubeSize * 2.0f + spacing) * 0.5f;

            switch (benchmark)
            {
            case 1:
                // 3000

                BoxShape blockShape = new BoxShape(cubeSize - collisionRadius);
                mass = 2.0f;

                for (int k = 0; k < 20; k++)
                {
                    for (int j = 0; j < size; j++)
                    {
                        pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
                        for (int i = 0; i < size; i++)
                        {
                            pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
                            RigidBody cmbody = LocalCreateRigidBody(mass, Matrix.Translation(pos), blockShape);
                        }
                    }
                    offset -= 0.05f * spacing * (size - 1);
                    // spacing *= 1.01f;
                    pos[1] += (cubeSize * 2.0f + spacing);
                }
                break;

            case 2:
                CreatePyramid(new Vector3(-20, 0, 0), 12, new Vector3(cubeSize));
                CreateWall(new Vector3(-2.0f, 0.0f, 0.0f), 12, new Vector3(cubeSize));
                CreateWall(new Vector3(4.0f, 0.0f, 0.0f), 12, new Vector3(cubeSize));
                CreateWall(new Vector3(10.0f, 0.0f, 0.0f), 12, new Vector3(cubeSize));
                CreateTowerCircle(new Vector3(25.0f, 0.0f, 0.0f), 8, 24, new Vector3(cubeSize));
                break;

            case 3:
                // TODO: Ragdolls
                break;

            case 4:
                cubeSize = 1.5f;

                ConvexHullShape convexHullShape = new ConvexHullShape();

                float scaling = 1;

                convexHullShape.LocalScaling = new Vector3(scaling);

                for (int i = 0; i < Taru.Vtx.Length / 3; i++)
                {
                    Vector3 vtx = new Vector3(Taru.Vtx[i * 3], Taru.Vtx[i * 3 + 1], Taru.Vtx[i * 3 + 2]);
                    convexHullShape.AddPoint(vtx * (1.0f / scaling));
                }

                //this will enable polyhedral contact clipping, better quality, slightly slower
                convexHullShape.InitializePolyhedralFeatures();

                for (int k = 0; k < 15; k++)
                {
                    for (int j = 0; j < size; j++)
                    {
                        pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
                        for (int i = 0; i < size; i++)
                        {
                            pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
                            LocalCreateRigidBody(mass, Matrix.Translation(pos), convexHullShape);
                        }
                    }
                    offset  -= 0.05f * spacing * (size - 1);
                    spacing *= 1.01f;
                    pos[1]  += (cubeSize * 2.0f + spacing);
                }
                break;

            case 5:
                Vector3 boxSize       = new Vector3(1.5f);
                float   boxMass       = 1.0f;
                float   sphereRadius  = 1.5f;
                float   sphereMass    = 1.0f;
                float   capsuleHalf   = 2.0f;
                float   capsuleRadius = 1.0f;
                float   capsuleMass   = 1.0f;

                size = 10;
                int height = 10;

                cubeSize = boxSize[0];
                spacing  = 2.0f;
                pos      = new Vector3(0.0f, 20.0f, 0.0f);
                offset   = -size * (cubeSize * 2.0f + spacing) * 0.5f;

                int numBodies = 0;

                Random random = new Random();

                for (int k = 0; k < height; k++)
                {
                    for (int j = 0; j < size; j++)
                    {
                        pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
                        for (int i = 0; i < size; i++)
                        {
                            pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
                            Vector3 bpos  = new Vector3(0, 25, 0) + new Vector3(5.0f * pos.X, pos.Y, 5.0f * pos.Z);
                            int     idx   = random.Next(10);
                            Matrix  trans = Matrix.Translation(bpos);

                            switch (idx)
                            {
                            case 0:
                            case 1:
                            case 2:
                            {
                                float    r        = 0.5f * (idx + 1);
                                BoxShape boxShape = new BoxShape(boxSize * r);
                                LocalCreateRigidBody(boxMass * r, trans, boxShape);
                            }
                            break;

                            case 3:
                            case 4:
                            case 5:
                            {
                                float       r           = 0.5f * (idx - 3 + 1);
                                SphereShape sphereShape = new SphereShape(sphereRadius * r);
                                LocalCreateRigidBody(sphereMass * r, trans, sphereShape);
                            }
                            break;

                            case 6:
                            case 7:
                            case 8:
                            {
                                float        r            = 0.5f * (idx - 6 + 1);
                                CapsuleShape capsuleShape = new CapsuleShape(capsuleRadius * r, capsuleHalf * r);
                                LocalCreateRigidBody(capsuleMass * r, trans, capsuleShape);
                            }
                            break;
                            }

                            numBodies++;
                        }
                    }
                    offset  -= 0.05f * spacing * (size - 1);
                    spacing *= 1.1f;
                    pos[1]  += (cubeSize * 2.0f + spacing);
                }

                //CreateLargeMeshBody();

                break;

            case 6:
                boxSize = new Vector3(1.5f, 1.5f, 1.5f);

                convexHullShape = new ConvexHullShape();

                for (int i = 0; i < Taru.Vtx.Length / 3; i++)
                {
                    Vector3 vtx = new Vector3(Taru.Vtx[i * 3], Taru.Vtx[i * 3 + 1], Taru.Vtx[i * 3 + 2]);
                    convexHullShape.AddPoint(vtx);
                }

                size   = 10;
                height = 10;

                cubeSize = boxSize[0];
                spacing  = 2.0f;
                pos      = new Vector3(0.0f, 20.0f, 0.0f);
                offset   = -size * (cubeSize * 2.0f + spacing) * 0.5f;


                for (int k = 0; k < height; k++)
                {
                    for (int j = 0; j < size; j++)
                    {
                        pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
                        for (int i = 0; i < size; i++)
                        {
                            pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
                            Vector3 bpos = new Vector3(0, 25, 0) + new Vector3(5.0f * pos.X, pos.Y, 5.0f * pos.Z);

                            LocalCreateRigidBody(mass, Matrix.Translation(bpos), convexHullShape);
                        }
                    }
                    offset  -= 0.05f * spacing * (size - 1);
                    spacing *= 1.1f;
                    pos[1]  += (cubeSize * 2.0f + spacing);
                }

                //CreateLargeMeshBody();

                break;

            case 7:
                // TODO
                //CreateTest6();
                //InitRays();
                break;
            }
        }
Пример #7
0
        protected override void OnInitializePhysics()
        {
            ManifoldPoint.ContactAdded += MyContactCallback;

            SetupEmptyDynamicsWorld();

            //CompoundCollisionAlgorithm.CompoundChildShapePairCallback = MyCompoundChildShapeCallback;
            convexDecompositionObjectOffset = new Vector3(10, 0, 0);


            // Load wavefront file
            var wo = new WavefrontObj();

            //string filename = UnityEngine.Application.dataPath + "/BulletUnity/Examples/Scripts/BulletSharpDemos/ConvexDecompositionDemo/data/file.obj";
            UnityEngine.TextAsset bytes      = (UnityEngine.TextAsset)UnityEngine.Resources.Load("file.obj");
            System.IO.Stream      byteStream = new System.IO.MemoryStream(bytes.bytes);

            int tcount = wo.LoadObj(byteStream);

            if (tcount == 0)
            {
                return;
            }

            // Convert file data to TriangleMesh
            var trimesh = new TriangleMesh();

            trimeshes.Add(trimesh);

            Vector3        localScaling = new Vector3(6, 6, 6);
            List <int>     indices      = wo.Indices;
            List <Vector3> vertices     = wo.Vertices;

            int i;

            for (i = 0; i < tcount; i++)
            {
                int index0 = indices[i * 3];
                int index1 = indices[i * 3 + 1];
                int index2 = indices[i * 3 + 2];

                Vector3 vertex0 = vertices[index0] * localScaling;
                Vector3 vertex1 = vertices[index1] * localScaling;
                Vector3 vertex2 = vertices[index2] * localScaling;

                trimesh.AddTriangleRef(ref vertex0, ref vertex1, ref vertex2);
            }

            // Create a hull approximation
            ConvexHullShape convexShape;

            using (var tmpConvexShape = new ConvexTriangleMeshShape(trimesh))
            {
                using (var hull = new ShapeHull(tmpConvexShape))
                {
                    hull.BuildHull(tmpConvexShape.Margin);
                    convexShape = new ConvexHullShape(hull.Vertices);
                }
            }
            if (sEnableSAT)
            {
                convexShape.InitializePolyhedralFeatures();
            }
            CollisionShapes.Add(convexShape);


            // Add non-moving body to world
            float mass = 1.0f;

            LocalCreateRigidBody(mass, Matrix.Translation(0, 2, 14), convexShape);

            const bool useQuantization = true;
            var        concaveShape    = new BvhTriangleMeshShape(trimesh, useQuantization);

            LocalCreateRigidBody(0, Matrix.Translation(convexDecompositionObjectOffset), concaveShape);

            CollisionShapes.Add(concaveShape);


            // HACD
            var hacd = new Hacd();

            hacd.SetPoints(wo.Vertices);
            hacd.SetTriangles(wo.Indices);
            hacd.CompacityWeight = 0.1;
            hacd.VolumeWeight    = 0.0;

            // Recommended HACD parameters: 2 100 false false false
            hacd.NClusters               = 2;        // minimum number of clusters
            hacd.Concavity               = 100;      // maximum concavity
            hacd.AddExtraDistPoints      = false;
            hacd.AddNeighboursDistPoints = false;
            hacd.AddFacesPoints          = false;
            hacd.NVerticesPerCH          = 100; // max of 100 vertices per convex-hull

            hacd.Compute();
            hacd.Save("output.wrl", false);


            // Generate convex result
            var outputFile = new FileStream("file_convex.obj", FileMode.Create, FileAccess.Write);
            var writer     = new StreamWriter(outputFile);

            var convexDecomposition = new ConvexDecomposition(writer, this);

            convexDecomposition.LocalScaling = localScaling;

            for (int c = 0; c < hacd.NClusters; c++)
            {
                int      nVertices    = hacd.GetNPointsCH(c);
                int      trianglesLen = hacd.GetNTrianglesCH(c) * 3;
                double[] points       = new double[nVertices * 3];
                long[]   triangles    = new long[trianglesLen];
                hacd.GetCH(c, points, triangles);

                if (trianglesLen == 0)
                {
                    continue;
                }

                Vector3[] verticesArray = new Vector3[nVertices];
                int       vi3           = 0;
                for (int vi = 0; vi < nVertices; vi++)
                {
                    verticesArray[vi] = new Vector3(
                        (float)points[vi3], (float)points[vi3 + 1], (float)points[vi3 + 2]);
                    vi3 += 3;
                }

                int[] trianglesInt = new int[trianglesLen];
                for (int ti = 0; ti < trianglesLen; ti++)
                {
                    trianglesInt[ti] = (int)triangles[ti];
                }

                convexDecomposition.ConvexDecompResult(verticesArray, trianglesInt);
            }


            // Combine convex shapes into a compound shape
            var compound = new CompoundShape();

            for (i = 0; i < convexDecomposition.convexShapes.Count; i++)
            {
                Vector3 centroid     = convexDecomposition.convexCentroids[i];
                var     convexShape2 = convexDecomposition.convexShapes[i];
                Matrix  trans        = Matrix.Translation(centroid);
                if (sEnableSAT)
                {
                    convexShape2.InitializePolyhedralFeatures();
                }
                CollisionShapes.Add(convexShape2);
                compound.AddChildShape(trans, convexShape2);

                LocalCreateRigidBody(1.0f, trans, convexShape2);
            }
            CollisionShapes.Add(compound);

            writer.Dispose();
            outputFile.Dispose();

#if true
            mass = 10.0f;
            var body2 = LocalCreateRigidBody(mass, Matrix.Translation(-convexDecompositionObjectOffset), compound);
            body2.CollisionFlags |= CollisionFlags.CustomMaterialCallback;

            convexDecompositionObjectOffset.Z = 6;
            body2 = LocalCreateRigidBody(mass, Matrix.Translation(-convexDecompositionObjectOffset), compound);
            body2.CollisionFlags |= CollisionFlags.CustomMaterialCallback;

            convexDecompositionObjectOffset.Z = -6;
            body2 = LocalCreateRigidBody(mass, Matrix.Translation(-convexDecompositionObjectOffset), compound);
            body2.CollisionFlags |= CollisionFlags.CustomMaterialCallback;
#endif
        }
        protected override void OnInitializePhysics()
        {
            ManifoldPoint.ContactAdded += MyContactCallback;

            SetupEmptyDynamicsWorld();

            CompoundCollisionAlgorithm.CompoundChildShapePairCallback = MyCompoundChildShapeCallback;
            convexDecompositionObjectOffset = new Vector3(10, 0, 0);


            // Load wavefront file
            var wo     = new WavefrontObj();
            int tcount = wo.LoadObj("data/file.obj");

            if (tcount == 0)
            {
                return;
            }

            // Convert file data to TriangleMesh
            var trimesh = new TriangleMesh();

            trimeshes.Add(trimesh);

            Vector3        localScaling = new Vector3(6, 6, 6);
            List <int>     indices      = wo.Indices;
            List <Vector3> vertices     = wo.Vertices;

            int i;

            for (i = 0; i < tcount; i++)
            {
                int index0 = indices[i * 3];
                int index1 = indices[i * 3 + 1];
                int index2 = indices[i * 3 + 2];

                Vector3 vertex0 = vertices[index0] * localScaling;
                Vector3 vertex1 = vertices[index1] * localScaling;
                Vector3 vertex2 = vertices[index2] * localScaling;

                trimesh.AddTriangleRef(ref vertex0, ref vertex1, ref vertex2);
            }

            // Create a hull approximation
            ConvexHullShape convexShape;

            using (var tmpConvexShape = new ConvexTriangleMeshShape(trimesh))
            {
                using (var hull = new ShapeHull(tmpConvexShape))
                {
                    hull.BuildHull(tmpConvexShape.Margin);
                    convexShape = new ConvexHullShape(hull.Vertices);
                }
            }
            if (sEnableSAT)
            {
                convexShape.InitializePolyhedralFeatures();
            }
            CollisionShapes.Add(convexShape);


            // Add non-moving body to world
            float mass = 1.0f;

            LocalCreateRigidBody(mass, Matrix.Translation(0, 2, 14), convexShape);

            const bool useQuantization = true;
            var        concaveShape    = new BvhTriangleMeshShape(trimesh, useQuantization);

            LocalCreateRigidBody(0, Matrix.Translation(convexDecompositionObjectOffset), concaveShape);

            CollisionShapes.Add(concaveShape);


            // HACD
            var hacd = new Hacd();

            hacd.SetPoints(wo.Vertices);
            hacd.SetTriangles(wo.Indices);
            hacd.CompacityWeight = 0.1;
            hacd.VolumeWeight    = 0.0;

            // Recommended HACD parameters: 2 100 false false false
            hacd.NClusters                = 2;       // minimum number of clusters
            hacd.Concavity                = 100;     // maximum concavity
            hacd.AddExtraDistPoints       = false;
            hacd.AddNeighboursDistPoints  = false;
            hacd.AddFacesPoints           = false;
            hacd.NumVerticesPerConvexHull = 100;     // max of 100 vertices per convex-hull

            hacd.Compute();
            hacd.Save("output.wrl", false);


            // Generate convex result
            var outputFile = new FileStream("file_convex.obj", FileMode.Create, FileAccess.Write);
            var writer     = new StreamWriter(outputFile);

            var convexDecomposition = new ConvexDecomposition(writer, this);

            convexDecomposition.LocalScaling = localScaling;

            for (int c = 0; c < hacd.NClusters; c++)
            {
                Vector3[] points;
                int[]     triangles;
                hacd.GetCH(c, out points, out triangles);

                convexDecomposition.ConvexDecompResult(points, triangles);
            }


            // Combine convex shapes into a compound shape
            var compound = new CompoundShape();

            for (i = 0; i < convexDecomposition.convexShapes.Count; i++)
            {
                Vector3 centroid     = convexDecomposition.convexCentroids[i];
                Matrix  trans        = Matrix.Translation(centroid);
                var     convexShape2 = convexDecomposition.convexShapes[i] as ConvexHullShape;
                if (sEnableSAT)
                {
                    convexShape2.InitializePolyhedralFeatures();
                }
                CollisionShapes.Add(convexShape2);
                compound.AddChildShape(trans, convexShape2);

                LocalCreateRigidBody(1.0f, trans, convexShape2);
            }
            CollisionShapes.Add(compound);

            writer.Dispose();
            outputFile.Dispose();

#if true
            mass = 10.0f;
            var body2 = LocalCreateRigidBody(mass, Matrix.Translation(-convexDecompositionObjectOffset), compound);
            body2.CollisionFlags |= CollisionFlags.CustomMaterialCallback;

            convexDecompositionObjectOffset.Z = 6;
            body2 = LocalCreateRigidBody(mass, Matrix.Translation(-convexDecompositionObjectOffset), compound);
            body2.CollisionFlags |= CollisionFlags.CustomMaterialCallback;

            convexDecompositionObjectOffset.Z = -6;
            body2 = LocalCreateRigidBody(mass, Matrix.Translation(-convexDecompositionObjectOffset), compound);
            body2.CollisionFlags |= CollisionFlags.CustomMaterialCallback;
#endif
        }