public void CanComposeFunction() { Device device = new Device(testContext); string code = @"function (I) -> (O) { O = I * I; }"; Function f = new Function(testContext, code); Assert.True(f.IsAllocated); DeviceTensor i = new DeviceTensor(device, new Compiler.PlaidML.Shape(testContext, PlaidmlDatatype.PLAIDML_DATA_INT32, 6), "I"); DeviceTensor o = new DeviceTensor(device, new Compiler.PlaidML.Shape(testContext, PlaidmlDatatype.PLAIDML_DATA_INT32, 6), "O"); Int32[] input_data = { 0, 1, 3, 4, 5, 6 }; i.CreateView <Int32>(MemoryMapType.Discard).CopyFromAndFree(input_data); var v = i.CreateView <Int32>(MemoryMapType.Retain); Assert.Equal(3, v[2]); Invoker <int> inv1 = new Invoker <int>(testContext, f, o, i); Assert.True(inv1.IsAllocated); Invocation <int> k = inv1.Invoke(); Assert.True(k.IsAllocated); DeviceTensorView <Int32> R = o.CreateView <Int32>(MemoryMapType.Retain); Assert.Equal(6, R.ElementCount); Assert.Equal(9, R[2]); DeviceTensor co = new DeviceTensor(device, new Compiler.PlaidML.Shape(testContext, PlaidmlDatatype.PLAIDML_DATA_INT32, 6), "O"); Composer c = new Composer(testContext); Applier a = new Applier(testContext, f); a.AddInputValue(i); var fo = a.AddOutputValue("O"); Assert.True(fo.IsAllocated); Assert.True(c.AddInputPlaceholder("I", i.DimensionCount)); Assert.True(c.AddOutputValue(co)); Assert.True(c.AddDependency(a)); Assert.True(c.AddUpdate(co, fo)); Function gf = c.BuildFunction(); Assert.True(gf.IsAllocated); Invoker <int> gi = new Invoker <int>(testContext, gf, co, i); Assert.True(gi.IsAllocated); Invocation <int> inv = gi.Invoke(); Assert.True(inv.IsAllocated); R = co.CreateView <Int32>(MemoryMapType.Retain); Assert.Equal(6, R.ElementCount); Assert.Equal(9, R[2]); }
public void CanComputeGradient() { Device device = new Device(testContext); string code = @"function (I) -> (O) { O = I * I; }"; Function f = new Function(testContext, code); Assert.True(f.IsAllocated); DeviceTensor i = new DeviceTensor(device, new Compiler.PlaidML.Shape(testContext, PlaidmlDatatype.PLAIDML_DATA_INT32, 6), "I"); DeviceTensor o = new DeviceTensor(device, new Compiler.PlaidML.Shape(testContext, PlaidmlDatatype.PLAIDML_DATA_INT32, 6), "O"); Int32[] input_data = { 0, 1, 3, 4, 5, 6 }; i.CreateView <Int32>(MemoryMapType.Discard).CopyFromAndFree(input_data); var v = i.CreateView <Int32>(MemoryMapType.Retain); Assert.Equal(3, v[2]); Invoker <int> inv1 = new Invoker <int>(testContext, f, o, i); Assert.True(inv1.IsAllocated); Invocation <int> k = inv1.Invoke(); Assert.True(k.IsAllocated); DeviceTensorView <Int32> R = o.CreateView <Int32>(MemoryMapType.Retain); Assert.Equal(6, R.ElementCount); Assert.Equal(9, R[2]); var gradients = new Dictionary <DeviceTensor, Value>(); for (int n = 0; n < inv1.InputTensors.Count; n++) { Gradient gc = new Gradient(testContext, inv1.OutputValue); if (!gc.IsAllocated) { continue; } Value grad = gc.ComputeWrt(inv1.InputTensors[n]); if (!grad.IsAllocated) { continue; } gradients.Add(inv1.InputTensors[n], grad); } Composer c = new Composer(testContext); foreach (DeviceTensor t in inv1.InputTensors) { Assert.True(c.AddInputPlaceholder(t.Name, t.DimensionCount)); } List <DeviceTensor> gradTensors = new List <DeviceTensor>(); foreach (var g in gradients) { var gt = new DeviceTensor(g.Key.Device, g.Key.Shape, g.Value.Name); c.AddOutputValue(gt); c.AddUpdate(gt, g.Value); gradTensors.Add(gt); } Function gf = c.BuildFunction(); Assert.True(gf.IsAllocated); Invoker <int> ginv = new Invoker <int>(testContext, gf, inv1.InputTensors.ToArray(), gradTensors.ToArray()); Assert.True(ginv.IsAllocated); var k2 = ginv.Invoke(); Assert.True(k2.IsAllocated); DeviceTensorView <Int32> RG = gradTensors.First().CreateView <Int32>(MemoryMapType.Retain); }