Пример #1
0
        ///<summary>Calculates the inverse of the matrix.</summary>
        ///<returns>the inverse of the matrix.</returns>
        ///<exception cref="NotPositiveDefiniteException">A is not positive definite.</exception>
        public ComplexDoubleMatrix GetInverse()
        {
            Compute();
            if (!ispd)
            {
                throw new NotPositiveDefiniteException();
            }
            else
            {
#if MANAGED
                var ret = ComplexDoubleMatrix.CreateIdentity(order);
                ret = Solve(ret);
                return(ret);
#else
                Complex[] inverse = new Complex[l.data.Length];
                Array.Copy(l.data, inverse, l.data.Length);
                Lapack.Potri.Compute(Lapack.UpLo.Lower, order, inverse, order);
                ComplexDoubleMatrix ret = new ComplexDoubleMatrix(order, order);
                ret.data = inverse;
                for (int i = 0; i < order; i++)
                {
                    for (int j = 0; j < order; j++)
                    {
                        if (j > i)
                        {
                            ret.data[j * order + i] = ComplexMath.Conjugate(ret.data[i * order + j]);
                        }
                    }
                }
                return(ret);
#endif
            }
        }
        public void SquareDecomp()
        {
            ComplexDoubleMatrix a = new ComplexDoubleMatrix(3);

            a[0, 0] = new Complex(1.1, 1.1);
            a[0, 1] = new Complex(2.2, -2.2);
            a[0, 2] = new Complex(3.3, 3.3);
            a[1, 0] = new Complex(4.4, -4.4);
            a[1, 1] = new Complex(5.5, 5.5);
            a[1, 2] = new Complex(6.6, -6.6);
            a[2, 0] = new Complex(7.7, 7.7);
            a[2, 1] = new Complex(8.8, -8.8);
            a[2, 2] = new Complex(9.9, 9.9);

            ComplexDoubleQRDecomp qrd = new ComplexDoubleQRDecomp(a);
            ComplexDoubleMatrix   qq  = qrd.Q.GetConjugateTranspose() * qrd.Q;
            ComplexDoubleMatrix   qr  = qrd.Q * qrd.R;
            ComplexDoubleMatrix   I   = ComplexDoubleMatrix.CreateIdentity(3);

            // determine the maximum relative error
            double MaxError = 0.0;

            for (int i = 0; i < 3; i++)
            {
                for (int j = 0; i < 3; i++)
                {
                    double E = ComplexMath.Absolute((qq[i, j] - I[i, j]));
                    if (E > MaxError)
                    {
                        MaxError = E;
                    }
                }
            }
            Assert.IsTrue(MaxError < 1.0E-14);

            MaxError = 0.0;
            for (int i = 0; i < 3; i++)
            {
                for (int j = 0; i < 3; i++)
                {
                    double E = ComplexMath.Absolute((qr[i, j] - a[i, j]) / a[i, j]);
                    if (E > MaxError)
                    {
                        MaxError = E;
                    }
                }
            }
            Assert.IsTrue(MaxError < 1.0E-14);
        }
Пример #3
0
        ///<summary>Calculates the inverse of the matrix.</summary>
        ///<returns>the inverse of the matrix.</returns>
        ///<exception cref="SingularMatrixException">matrix is singular.</exception>
        public ComplexDoubleMatrix GetInverse()
        {
            Compute();
            if (singular)
            {
                throw new SingularMatrixException();
            }
            else
            {
#if MANAGED
                ComplexDoubleMatrix ret = ComplexDoubleMatrix.CreateIdentity(order);
                ret = Solve(ret);
                return(ret);
#else
                Complex[] inverse = new Complex[factor.Length];
                Array.Copy(factor, inverse, factor.Length);
                Lapack.Getri.Compute(order, inverse, order, pivots);
                ComplexDoubleMatrix ret = new ComplexDoubleMatrix(order, order);
                ret.data = inverse;
                return(ret);
#endif
            }
        }
Пример #4
0
        /// <summary>Performs the QR factorization.</summary>
        protected override void InternalCompute()
        {
            int m = matrix.Rows;
            int n = matrix.Columns;

#if MANAGED
            int minmn = m < n ? m : n;
            r_ = new ComplexDoubleMatrix(matrix); // create a copy
            ComplexDoubleVector[] u = new ComplexDoubleVector[minmn];
            for (int i = 0; i < minmn; i++)
            {
                u[i] = Householder.GenerateColumn(r_, i, m - 1, i);
                Householder.UA(u[i], r_, i, m - 1, i + 1, n - 1);
            }
            q_ = ComplexDoubleMatrix.CreateIdentity(m);
            for (int i = minmn - 1; i >= 0; i--)
            {
                Householder.UA(u[i], q_, i, m - 1, i, m - 1);
            }
#else
            qr      = ComplexDoubleMatrix.ToLinearComplexArray(matrix);
            jpvt    = new int[n];
            jpvt[0] = 1;
            Lapack.Geqp3.Compute(m, n, qr, m, jpvt, out tau);
            r_ = new ComplexDoubleMatrix(m, n);
            // Populate R

            for (int i = 0; i < m; i++)
            {
                for (int j = 0; j < n; j++)
                {
                    if (i <= j)
                    {
                        r_.data[j * m + i] = qr[(jpvt[j] - 1) * m + i];
                    }
                    else
                    {
                        r_.data[j * m + i] = Complex.Zero;
                    }
                }
            }

            q_ = new ComplexDoubleMatrix(m, m);
            for (int i = 0; i < m; i++)
            {
                for (int j = 0; j < m; j++)
                {
                    if (j < n)
                    {
                        q_.data[j * m + i] = qr[j * m + i];
                    }
                    else
                    {
                        q_.data[j * m + i] = Complex.Zero;
                    }
                }
            }
            if (m < n)
            {
                Lapack.Ungqr.Compute(m, m, m, q_.data, m, tau);
            }
            else
            {
                Lapack.Ungqr.Compute(m, m, n, q_.data, m, tau);
            }
#endif
            for (int i = 0; i < m; i++)
            {
                if (q_[i, i] == 0)
                {
                    isFullRank = false;
                }
            }
        }