Пример #1
0
        public void testAskSafeRooms()
        {
            WumpusKnowledgeBase KB;
            int t = 0;

            KB = new WumpusKnowledgeBase(dpll, 2);
            step(KB, new AgentPercept(false, false, false, false, false), t);
            AreSetEqual(CollectionFactory.CreateSet <Room>(
                            new Room(1, 1),
                            new Room(1, 2),
                            new Room(2, 1)), KB.askSafeRooms(t));

            KB = new WumpusKnowledgeBase(dpll, 2);

            step(KB, new AgentPercept(true, false, false, false, false), t);
            AreSetEqual(CollectionFactory.CreateSet <Room>(new Room(1, 1)), KB.askSafeRooms(t));

            KB = new WumpusKnowledgeBase(dpll, 2);

            step(KB, new AgentPercept(false, true, false, false, false), t);
            AreSetEqual(CollectionFactory.CreateSet <Room>(new Room(1, 1)), KB.askSafeRooms(t));

            KB = new WumpusKnowledgeBase(dpll, 2);

            step(KB, new AgentPercept(true, true, false, false, false), t);
            AreSetEqual(CollectionFactory.CreateSet <Room>(new Room(1, 1)), KB.askSafeRooms(t));
        }
Пример #2
0
        public ProbabilityTable pointwiseProductPOS(ProbabilityTable multiplier, params IRandomVariable[] prodVarOrder)
        {
            ProbabilityTable product = new ProbabilityTable(prodVarOrder);

            if (!product.randomVarInfo.GetKeys()
                .SequenceEqual(
                    SetOps.union(CollectionFactory.CreateSet <IRandomVariable>(randomVarInfo.GetKeys()), CollectionFactory.CreateSet <IRandomVariable>(multiplier.randomVarInfo.GetKeys()))))
            {
                throw new IllegalArgumentException("Specified list deatailing order of mulitplier is inconsistent.");
            }

            // If no variables in the product
            if (1 == product.getValues().Length)
            {
                product.getValues()[0] = getValues()[0] * multiplier.getValues()[0];
            }
            else
            {
                // Otherwise need to iterate through the product
                // to calculate its values based on the terms.
                object[] term1Values        = new object[randomVarInfo.Size()];
                object[] term2Values        = new object[multiplier.randomVarInfo.Size()];
                ProbabilityTableIterator di = new ProbabilityTablecIteratorImpl3(term1Values,
                                                                                 term2Values, product, multiplier, this);
                product.iterateOverTable(di);
            }

            return(product);
        }
Пример #3
0
        // function ELIMINATION-ASK(X, e, bn) returns a distribution over X

        /**
         * The ELIMINATION-ASK algorithm in Figure 14.11.
         *
         * @param X
         *            the query variables.
         * @param e
         *            observed values for variables E.
         * @param bn
         *            a Bayes net with variables {X} &cup; E &cup; Y /* Y = hidden
         *            variables //
         * @return a distribution over the query variables.
         */
        public ICategoricalDistribution eliminationAsk(IRandomVariable[] X, AssignmentProposition[] e, IBayesianNetwork bn)
        {
            ISet <IRandomVariable>        hidden = CollectionFactory.CreateSet <IRandomVariable>();
            ICollection <IRandomVariable> VARS   = CollectionFactory.CreateQueue <IRandomVariable>();

            calculateVariables(X, e, bn, hidden, VARS);

            // factors <- []
            ICollection <IFactor> factors = CollectionFactory.CreateQueue <IFactor>();

            // for each var in ORDER(bn.VARS) do
            foreach (IRandomVariable var in order(bn, VARS))
            {
                // factors <- [MAKE-FACTOR(var, e) | factors]
                factors.Insert(0, makeFactor(var, e, bn));
                // if var is hidden variable then factors <- SUM-OUT(var, factors)
                if (hidden.Contains(var))
                {
                    factors = sumOut(var, factors, bn);
                }
            }
            // return NORMALIZE(POINTWISE-PRODUCT(factors))
            IFactor product = pointwiseProduct(factors);

            // Note: Want to ensure the order of the product matches the
            // query variables
            return(((ProbabilityTable)product.pointwiseProductPOS(_identity, X)).normalize());
        }
Пример #4
0
        public virtual ICategoricalDistribution jointDistribution(params IProposition[] propositions)
        {
            ProbabilityTable       d        = null;
            IProposition           conjProp = ProbUtil.constructConjunction(propositions);
            ISet <IRandomVariable> vars     = CollectionFactory.CreateSet <IRandomVariable>(conjProp.getUnboundScope());

            if (vars.Size() > 0)
            {
                IRandomVariable[] distVars = new IRandomVariable[vars.Size()];
                int i = 0;
                foreach (IRandomVariable rv in vars)
                {
                    distVars[i] = rv;
                    ++i;
                }

                ProbabilityTable ud     = new ProbabilityTable(distVars);
                object[]         values = new object[vars.Size()];

                CategoricalDistributionIterator di = new CategoricalDistributionIteratorJointDistribution(conjProp, vars, ud, values);

                IRandomVariable[] X = conjProp.getScope().ToArray();
                bayesInference.Ask(X, new AssignmentProposition[0], bayesNet).iterateOver(di);

                d = ud;
            }
            else
            {
                // No Unbound Variables, therefore just return
                // the singular probability related to the proposition.
                d = new ProbabilityTable();
                d.setValue(0, prior(propositions));
            }
            return(d);
        }
Пример #5
0
        /**
         * Taken {@code weightedSampleWithReplacement} out of {@link ParticleFiltering} and extended by a minimum weight.
         * @param samples the samples to be re-sampled.
         * @param w the probability distribution on the samples.
         * @return the new set of samples.
         */
        protected ISet <P> extendedWeightedSampleWithReplacement(ISet <P> samples, double[] w)
        {
            int i = 0;

            for (; i < samples.Size(); ++i)
            {
                if (w[i] > weightCutOff)
                {
                    break;
                }
            }
            if (i >= samples.Size())
            {
                return(generateCloud(samples.Size()));                     /*If all particleCloud are below weightCutOff, generate a new set of samples, as we are lost.*/
            }
            /*WEIGHTED-SAMPLE-WITH-REPLACEMENT:*/
            double[] normalizedW = Util.normalize(w);
            ISet <P> newSamples  = CollectionFactory.CreateSet <P>();

            P[] array = samples.ToArray();
            for (i = 0; i < samples.Size(); ++i)
            {
                int selectedSample = (int)ProbUtil.sample(randomizer.NextDouble(), sampleIndexes, normalizedW);
                newSamples.Add((array[selectedSample]).Clone());
            }
            return(newSamples);
        }
Пример #6
0
        public void testAskPossibleWumpusRooms()
        {
            WumpusKnowledgeBase KB;
            int t = 0;

            KB = new WumpusKnowledgeBase(dpll, 2);
            step(KB, new AgentPercept(false, false, false, false, false), t);
            AreSetEqual(CollectionFactory.CreateSet <Room>(new Room(2, 2)), KB.askPossibleWumpusRooms(t));

            KB = new WumpusKnowledgeBase(dpll, 2);

            step(KB, new AgentPercept(true, false, false, false, false), t);
            AreSetEqual(CollectionFactory.CreateSet <Room>(
                            new Room(1, 2),
                            new Room(2, 1)), KB.askPossibleWumpusRooms(t));

            KB = new WumpusKnowledgeBase(dpll, 3);

            step(KB, new AgentPercept(false, false, false, false, false), t);
            AreSetEqual(CollectionFactory.CreateSet <Room>(
                            new Room(1, 3),
                            new Room(2, 2),
                            new Room(2, 3),
                            new Room(3, 1),
                            new Room(3, 2),
                            new Room(3, 3)), KB.askPossibleWumpusRooms(t));
            KB.makeActionSentence(new Forward(new AgentPosition(1, 1, AgentPosition.Orientation.FACING_EAST)), t); // Move agent to [2,1]
        }
Пример #7
0
        public DynamicBayesNet(IBayesianNetwork priorNetwork,
                               IMap <IRandomVariable, IRandomVariable> X_0_to_X_1,
                               ISet <IRandomVariable> E_1, params INode[] rootNodes)
            : base(rootNodes)
        {
            foreach (var x0_x1 in X_0_to_X_1)
            {
                IRandomVariable x0 = x0_x1.GetKey();
                IRandomVariable x1 = x0_x1.GetValue();
                this.X_0.Add(x0);
                this.X_1.Add(x1);
                this.X_0_to_X_1.Put(x0, x1);
                this.X_1_to_X_0.Put(x1, x0);
            }
            this.E_1.AddAll(E_1);

            // Assert the X_0, X_1, and E_1 sets are of expected sizes
            ISet <IRandomVariable> combined = CollectionFactory.CreateSet <IRandomVariable>();

            combined.AddAll(X_0);
            combined.AddAll(X_1);
            combined.AddAll(E_1);
            if (SetOps.difference(CollectionFactory.CreateSet <IRandomVariable>(varToNodeMap.GetKeys()), combined).Size() != 0)
            {
                throw new IllegalArgumentException("X_0, X_1, and E_1 do not map correctly to the Nodes describing this Dynamic Bayesian Network.");
            }
            this.priorNetwork = priorNetwork;

            X_1_VariablesInTopologicalOrder.AddAll(GetVariablesInTopologicalOrder());
            X_1_VariablesInTopologicalOrder.RemoveAll(X_0);
            X_1_VariablesInTopologicalOrder.RemoveAll(E_1);
        }
Пример #8
0
        /**
         * <pre>
         * function INFER(clause, usable) returns clauses
         */
        private ISet <Clause> infer(Clause clause, ISet <Clause> usable)
        {
            ISet <Clause> resultingClauses = CollectionFactory.CreateSet <Clause>();

            // * resolve clause with each member of usable
            foreach (Clause c in usable)
            {
                ISet <Clause> resolvents = clause.binaryResolvents(c);
                foreach (Clause rc in resolvents)
                {
                    resultingClauses.Add(rc);
                }

                // if using paramodulation to handle equality
                if (isUseParamodulation())
                {
                    ISet <Clause> paras = paramodulation.apply(clause, c, true);
                    foreach (Clause p in paras)
                    {
                        resultingClauses.Add(p);
                    }
                }
            }

            // * return the resulting clauses after applying filter
            return(getClauseFilter().filter(resultingClauses));
        }
        public ICategoricalDistribution jointDistribution(params IProposition[] propositions)
        {
            ProbabilityTable       d        = null;
            IProposition           conjProp = ProbUtil.constructConjunction(propositions);
            ISet <IRandomVariable> vars     = CollectionFactory.CreateSet <IRandomVariable>(conjProp.getUnboundScope());

            if (vars.Size() > 0)
            {
                IRandomVariable[] distVars = vars.ToArray();

                ProbabilityTable ud     = new ProbabilityTable(distVars);
                object[]         values = new object[vars.Size()];

                ProbabilityTable.ProbabilityTableIterator di = new ProbabilityTableIterator(conjProp, ud, values, vars);

                distribution.iterateOverTable(di);

                d = ud;
            }
            else
            {
                // No Unbound Variables, therefore just return
                // the singular probability related to the proposition.
                d = new ProbabilityTable();
                d.setValue(0, prior(propositions));
            }
            return(d);
        }
Пример #10
0
        public ProbabilityTable sumOut(params IRandomVariable[] vars)
        {
            ISet <IRandomVariable> soutVars = CollectionFactory.CreateSet <IRandomVariable>(this.randomVarInfo.GetKeys());

            foreach (IRandomVariable rv in vars)
            {
                soutVars.Remove(rv);
            }
            ProbabilityTable summedOut = new ProbabilityTable(soutVars);

            if (1 == summedOut.getValues().Length)
            {
                summedOut.getValues()[0] = getSum();
            }
            else
            {
                // Otherwise need to iterate through this distribution
                // to calculate the summed out distribution.
                object[] termValues         = new object[summedOut.randomVarInfo.Size()];
                ProbabilityTableIterator di = new ProbabilityTableIteratorImpl(summedOut, termValues);

                iterateOverTable(di);
            }

            return(summedOut);
        }
Пример #11
0
        public ProbabilityTable pointwiseProduct(ProbabilityTable multiplier)
        {
            ISet <IRandomVariable> prodVars = SetOps.union(CollectionFactory.CreateSet <IRandomVariable>(randomVarInfo.GetKeys()),
                                                           CollectionFactory.CreateSet <IRandomVariable>(multiplier.randomVarInfo.GetKeys()));

            return(pointwiseProductPOS(multiplier, prodVars.ToArray()));
        }
Пример #12
0
        /**
         * Returns the specified sentence as a list of clauses, where each clause is
         * a disjunction of literals.
         *
         * @param aSentence
         *            a sentence in first order logic (predicate calculus)
         *
         * @return the specified sentence as a list of clauses, where each clause is
         *         a disjunction of literals.
         */
        public CNF convertToCNF(Sentence aSentence)
        {
            // I)mplications Out:
            Sentence implicationsOut = (Sentence)aSentence.accept(new ImplicationsOut(), null);

            // N)egations In:
            Sentence negationsIn = (Sentence)implicationsOut.accept(new NegationsIn(), null);

            // S)tandardize variables:
            // For sentences like:
            // (FORALL x P(x)) V (EXISTS x Q(x)),
            // which use the same variable name twice, change the name of one of the
            // variables.
            Sentence saQuantifiers = (Sentence)negationsIn.accept(
                new StandardizeQuantiferVariables(substVisitor),
                CollectionFactory.CreateSet <Variable>());

            // Remove explicit quantifiers, by skolemizing existentials
            // and dropping universals:
            // E)xistentials Out
            // A)lls Out:
            Sentence andsAndOrs = (Sentence)saQuantifiers.accept(new RemoveQuantifiers(parser), CollectionFactory.CreateSet <Variable>());

            // D)istribution
            // V over ^:
            Sentence orDistributedOverAnd = (Sentence)andsAndOrs.accept(new DistributeOrOverAnd(), null);

            // O)perators Out
            return(new CNFConstructor().construct(orDistributedOverAnd));
        }
Пример #13
0
        public void testPlanShot()
        {
            HybridWumpusAgent hwa = new HybridWumpusAgent(4);

            // Should be just shoot as are facing the Wumpus
            Assert.AreEqual(CollectionFactory.CreateQueue <IAction>(new Shoot()),
                            hwa.planShot(new AgentPosition(1, 1, AgentPosition.Orientation.FACING_EAST),
                                         CollectionFactory.CreateSet <Room>(new Room(3, 1)),
                                         allRooms(4)
                                         ));
            Assert.AreEqual(CollectionFactory.CreateQueue <IAction>(
                                new TurnLeft(AgentPosition.Orientation.FACING_EAST),
                                new Shoot()
                                ),
                            hwa.planShot(new AgentPosition(1, 1, AgentPosition.Orientation.FACING_EAST),
                                         CollectionFactory.CreateSet <Room>(new Room(1, 2)),
                                         allRooms(4)
                                         ));
            Assert.AreEqual(CollectionFactory.CreateQueue <IAction>(
                                new Forward(new AgentPosition(1, 1, AgentPosition.Orientation.FACING_EAST)),
                                new TurnLeft(AgentPosition.Orientation.FACING_EAST),
                                new Shoot()
                                ),
                            hwa.planShot(new AgentPosition(1, 1, AgentPosition.Orientation.FACING_EAST),
                                         CollectionFactory.CreateSet <Room>(new Room(2, 2)),
                                         allRooms(4)
                                         ));
        }
Пример #14
0
        /**
         * AIMA3e p.g. 260:<br>
         * <quote><i>Pure symbol heuristic:</i> A <b>pure symbol</b> is a symbol
         * that always appears with the same "sign" in all clauses. For example, in
         * the three clauses (A | ~B), (~B | ~C), and (C | A), the symbol A is pure
         * because only the positive literal appears, B is pure because only the
         * negative literal appears, and C is impure. It is easy to see that if a
         * sentence has a model, then it has a model with the pure symbols assigned
         * so as to make their literals true, because doing so can never make a
         * clause false. Note that, in determining the purity of a symbol, the
         * algorithm can ignore clauses that are already known to be true in the
         * model constructed so far. For example, if the model contains B=false,
         * then the clause (~B | ~C) is already true, and in the remaining clauses C
         * appears only as a positive literal; therefore C becomes pure.</quote>
         *
         * @param symbols
         *            a list of currently unassigned symbols in the model (to be
         *            checked if pure or not).
         * @param clauses
         * @param model
         * @return a proposition symbol and value pair identifying a pure symbol and
         *         a value to be assigned to it, otherwise null if no pure symbol
         *         can be identified.
         */
        protected Pair <PropositionSymbol, bool?> findPureSymbol(ICollection <PropositionSymbol> symbols, ISet <Clause> clauses, Model model)
        {
            Pair <PropositionSymbol, bool?> result = null;

            ISet <PropositionSymbol> symbolsToKeep = CollectionFactory.CreateSet <PropositionSymbol>(symbols);
            // Collect up possible positive and negative candidate sets of pure
            // symbols
            ISet <PropositionSymbol> candidatePurePositiveSymbols = CollectionFactory.CreateSet <PropositionSymbol>();
            ISet <PropositionSymbol> candidatePureNegativeSymbols = CollectionFactory.CreateSet <PropositionSymbol>();

            foreach (Clause c in clauses)
            {
                // Algorithm can ignore clauses that are already known to be true
                if (true.Equals(model.determineValue(c)))
                {
                    continue;
                }
                // Collect possible candidates, removing all candidates that are
                // not part of the input list of symbols to be considered.
                foreach (PropositionSymbol p in c.getPositiveSymbols())
                {
                    if (symbolsToKeep.Contains(p))
                    {
                        candidatePurePositiveSymbols.Add(p);
                    }
                }
                foreach (PropositionSymbol n in c.getNegativeSymbols())
                {
                    if (symbolsToKeep.Contains(n))
                    {
                        candidatePureNegativeSymbols.Add(n);
                    }
                }
            }

            // Determine the overlap/intersection between the positive and negative
            // candidates
            foreach (PropositionSymbol s in symbolsToKeep)
            {
                // Remove the non-pure symbols
                if (candidatePurePositiveSymbols.Contains(s) && candidatePureNegativeSymbols.Contains(s))
                {
                    candidatePurePositiveSymbols.Remove(s);
                    candidatePureNegativeSymbols.Remove(s);
                }
            }

            // We have an implicit preference for positive pure symbols
            if (candidatePurePositiveSymbols.Size() > 0)
            {
                result = new Pair <PropositionSymbol, bool?>(Util.first(candidatePurePositiveSymbols), true);
            } // We have a negative pure symbol
            else if (candidatePureNegativeSymbols.Size() > 0)
            {
                result = new Pair <PropositionSymbol, bool?>(Util.first(candidatePureNegativeSymbols), false);
            }

            return(result);
        }
Пример #15
0
        public ISet <Variable> collectAllVariables(Term term)
        {
            ISet <Variable> variables = CollectionFactory.CreateSet <Variable>();

            term.accept(this, variables);

            return(variables);
        }
Пример #16
0
 /**
  * Find the disjoint set that an element belongs to.
  *
  * @param element
  *            the element whose disjoint set is being sought.
  * @return the disjoint set for the element or null if makeSet(element) was
  *         not previously called.
  */
 public ISet <E> find(E element)
 {
     // Note: Instantiate normal sets to ensure IdentityHashSet
     // is not exposed outside of this class.
     // This also ensures the internal logic cannot
     // be corrupted externally due to changing sets.
     return(CollectionFactory.CreateSet <E>(elementToSet.Get(element)));
 }
Пример #17
0
        protected void addChild(INode childNode)
        {
            children = CollectionFactory.CreateSet <INode>(children);

            children.Add(childNode);

            children = CollectionFactory.CreateReadOnlySet <INode>(children);
        }
Пример #18
0
        // Note: The set guarantees the order in which they were
        // found.
        public ISet <Variable> collectAllVariables(Sentence sentence)
        {
            ISet <Variable> variables = CollectionFactory.CreateSet <Variable>();

            sentence.accept(this, variables);

            return(variables);
        }
Пример #19
0
            public void addClause(Clause c, ISet <Clause> sos, ISet <Clause> usable)
            {
                // Perform forward subsumption elimination
                bool addToSOS = true;

                for (int i = minNoLiterals; i < c.getNumberLiterals(); i++)
                {
                    ISet <Clause> fs = clausesGroupedBySize.Get(i);
                    if (null != fs)
                    {
                        foreach (Clause s in fs)
                        {
                            if (s.subsumes(c))
                            {
                                addToSOS = false;
                                break;
                            }
                        }
                    }
                    if (!addToSOS)
                    {
                        break;
                    }
                }

                if (addToSOS)
                {
                    sos.Add(c);
                    lightestClauseHeuristic.addedClauseToSOS(c);
                    indexClause(c);
                    // Have added clause, therefore
                    // perform backward subsumption elimination
                    ISet <Clause> subsumed = CollectionFactory.CreateSet <Clause>();
                    for (int i = c.getNumberLiterals() + 1; i <= maxNoLiterals; i++)
                    {
                        subsumed.Clear();
                        ISet <Clause> bs = clausesGroupedBySize.Get(i);
                        if (null != bs)
                        {
                            foreach (Clause s in bs)
                            {
                                if (c.subsumes(s))
                                {
                                    subsumed.Add(s);
                                    if (sos.Contains(s))
                                    {
                                        sos.Remove(s);
                                        lightestClauseHeuristic
                                        .removedClauseFromSOS(s);
                                    }
                                    usable.Remove(s);
                                }
                            }
                            bs.RemoveAll(subsumed);
                        }
                    }
                }
            }
Пример #20
0
 static BooleanDomain()
 {
     // Keep consistent order
     _possibleValues = CollectionFactory.CreateSet <bool>();
     _possibleValues.Add(true);
     _possibleValues.Add(false);
     // Ensure cannot be modified
     _possibleValues = CollectionFactory.CreateReadOnlySet <bool>(_possibleValues);
 }
Пример #21
0
 static CellWorldAction()
 {
     _actions = CollectionFactory.CreateSet <CellWorldAction>();
     _actions.Add(Up);
     _actions.Add(Down);
     _actions.Add(Left);
     _actions.Add(Right);
     _actions.Add(None);
 }
Пример #22
0
 public ISet <CellWorldAction> actions(Cell <double> s)
 {
     // All actions can be performed in each cell
     // (except terminal states)
     if (terminals.Contains(s))
     {
         return(CollectionFactory.CreateSet <CellWorldAction>());
     }
     return(CellWorldAction.Actions());
 }
Пример #23
0
        //ISet<bool> getPossibleValues()
        //{
        //    return _possibleValues;
        //}

        public override ISet <object> GetPossibleValues()
        {
            ISet <object> obj = CollectionFactory.CreateSet <object>();

            foreach (bool value in _possibleValues)
            {
                obj.Add(value);
            }
            return(obj);
        }
Пример #24
0
        public override ISet <object> GetPossibleValues()
        {
            ISet <object> obj = CollectionFactory.CreateSet <object>();

            foreach (int i in possibleValues)
            {
                obj.Add(i);
            }
            return(obj);
        }
Пример #25
0
        /**
         * Applies a move to the samples, creating a new {@link Set}.
         * @param samples the samples the move will be applied to.
         * @param move the move to be applied to the samples.
         * @return a new set of size N containing the moved samples.
         */
        protected ISet <P> applyMove(ISet <P> samples, M move)
        {
            ISet <P> newSamples = CollectionFactory.CreateSet <P>();

            foreach (P sample in samples)
            {
                newSamples.Add(sample.ApplyMovement(move.GenerateNoise()));
            }
            return(newSamples);
        }
Пример #26
0
            public static ISet <Literal> getLiterals(Sentence disjunctiveSentence)
            {
                ISet <Literal> result = CollectionFactory.CreateSet <Literal>();

                LiteralCollector literalCollector = new LiteralCollector();

                result = disjunctiveSentence.accept(literalCollector, result);

                return(result);
            }
Пример #27
0
        /**
         * Create a set for the provided values.
         * @param values
         *        the sets initial values.
         * @return a Set of the provided values.
         */
        public static ISet <V> createSet <V>(params V[] values)
        {
            ISet <V> set = CollectionFactory.CreateSet <V>();

            foreach (V value in values)
            {
                set.Add(value);
            }
            return(set);
        }
Пример #28
0
        /**
         * Create a new conjunction of clauses by taking the clauses from the
         * current conjunction and adding additional clauses to it.
         *
         * @param additionalClauses
         *            the additional clauses to be added to the existing set of
         *            clauses in order to create a new conjunction.
         * @return a new conjunction of clauses containing the existing and
         *         additional clauses passed in.
         */
        public ConjunctionOfClauses extend(ICollection <Clause> additionalClauses)
        {
            ISet <Clause> extendedClauses = CollectionFactory.CreateSet <Clause>();

            extendedClauses.AddAll(clauses);
            extendedClauses.AddAll(additionalClauses);

            ConjunctionOfClauses result = new ConjunctionOfClauses(extendedClauses);

            return(result);
        }
Пример #29
0
        public ISet <Variable> collectAllVariables(Chain chain)
        {
            ISet <Variable> variables = CollectionFactory.CreateSet <Variable>();

            foreach (Literal l in chain.getLiterals())
            {
                l.getAtomicSentence().accept(this, variables);
            }

            return(variables);
        }
Пример #30
0
        /**
         * PL-RESOLVE(C<sub>i</sub>, C<sub>j</sub>)<br>
         * Calculate the set of all possible clauses by resolving its two inputs.
         *
         * @param ci
         *            clause 1
         * @param cj
         *            clause 2
         * @return the set of all possible clauses obtained by resolving its two
         *         inputs.
         */
        public ISet <Clause> plResolve(Clause ci, Clause cj)
        {
            ISet <Clause> resolvents = CollectionFactory.CreateSet <Clause>();

            // The complementary positive literals from C_i
            resolvePositiveWithNegative(ci, cj, resolvents);
            // The complementary negative literals from C_i
            resolvePositiveWithNegative(cj, ci, resolvents);

            return(resolvents);
        }