/// <summary> /// Determine the input fields. /// </summary> /// /// <param name="headerList">The headers.</param> /// <returns>The indexes of the input fields.</returns> private int[] DetermineInputFields(CSVHeaders headerList) { IList <Int32> fields = new List <Int32>(); for (int currentIndex = 0; currentIndex < headerList.Size(); currentIndex++) { String baseName = headerList.GetBaseHeader(currentIndex); int slice = headerList.GetSlice(currentIndex); AnalystField field = Analyst.Script .FindNormalizedField(baseName, slice); if (field != null && field.Input) { fields.Add(currentIndex); } } // allocate result array var result = new int[fields.Count]; for (int i = 0; i < result.Length; i++) { result[i] = (fields[i]); } return(result); }
/// <summary> /// Determine the ideal fields. /// </summary> /// /// <param name="headerList">The headers.</param> /// <returns>The indexes of the ideal fields.</returns> private int[] DetermineIdealFields(CSVHeaders headerList) { int[] result; String type = Prop.GetPropertyString( ScriptProperties.MlConfigType); // is it non-supervised? if (type.Equals(MLMethodFactory.TypeSOM)) { result = new int[0]; return(result); } IList <Int32> fields = new List <Int32>(); for (int currentIndex = 0; currentIndex < headerList.Size(); currentIndex++) { String baseName = headerList.GetBaseHeader(currentIndex); int slice = headerList.GetSlice(currentIndex); AnalystField field = Analyst.Script .FindNormalizedField(baseName, slice); if (field != null && field.Output) { fields.Add(currentIndex); } } // allocate result array result = new int[fields.Count]; for (int i = 0; i < result.Length; i++) { result[i] = (fields[i]); } return(result); }