public void ValidateProbabilityLn(double p, int x, double dln) { var b = new Bernoulli(p); AssertEx.AreEqual(dln, b.ProbabilityLn(x)); }
public void ValidateProbabilityLn( [Values(0.0, 0.0, 0.0, 0.0, 0.3, 0.3, 0.3, 0.3, 1.0, 1.0, 1.0, 1.0)] double p, [Values(-1, 0, 1, 2, -1, 0, 1, 2, -1, 0, 1, 2)] int x, [Values(Double.NegativeInfinity, 0.0, Double.NegativeInfinity, Double.NegativeInfinity, Double.NegativeInfinity, -0.35667494393873244235395440410727451457180907089949815, -1.2039728043259360296301803719337238685164245381839102, Double.NegativeInfinity, Double.NegativeInfinity, Double.NegativeInfinity, 0.0, Double.NegativeInfinity)] double dln) { var b = new Bernoulli(p); Assert.AreEqual(dln, b.ProbabilityLn(x)); }
public void ValidateProbabilityLn(double p, int x, double dln) { var b = new Bernoulli(p); Assert.AreEqual(dln, b.ProbabilityLn(x)); }
/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/Bernoulli_distribution">Bernoulli distribution</a> public void Run() { // 1. Initialize the new instance of the Bernoulli distribution class with parameter P = 0.2 var bernoulli = new Bernoulli(0.2); Console.WriteLine(@"1. Initialize the new instance of the Bernoulli distribution class with parameter P = {0}", bernoulli.P); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", bernoulli); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '3'", bernoulli.CumulativeDistribution(3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability mass at location '3'", bernoulli.Probability(3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability mass at location '3'", bernoulli.ProbabilityLn(3).ToString(" #0.00000;-#0.00000")); // Entropy Console.WriteLine(@"{0} - Entropy", bernoulli.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", bernoulli.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", bernoulli.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", bernoulli.Mean.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", bernoulli.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", bernoulli.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", bernoulli.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness Console.WriteLine(@"{0} - Skewness", bernoulli.Skewness.ToString(" #0.00000;-#0.00000")); Console.WriteLine(); // 3. Generate 10 samples of the Bernoulli distribution Console.WriteLine(@"3. Generate 10 samples of the Bernoulli distribution"); for (var i = 0; i < 10; i++) { Console.Write(bernoulli.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the Bernoulli(0.2) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the Bernoulli(0.2) distribution and display histogram"); var data = new int[100000]; Bernoulli.Samples(data, 0.2); ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 5. Generate 100000 samples of the Bernoulli(4) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the Bernoulli(0.9) distribution and display histogram"); Bernoulli.Samples(data, 0.9); ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the Bernoulli(8) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the Bernoulli(0.5) distribution and display histogram"); Bernoulli.Samples(data, 0.5); ConsoleHelper.DisplayHistogram(data); }