private static void StandardCopyTask(DataStream reportStream) { double[] errors = new double[100]; long[] times = new long[100]; for (int i = 0; i < 100; i++) { errors[i] = 1; } const int seed = 32702; Console.WriteLine(seed); //TODO args parsing shit Random rand = new Random(seed); const int vectorSize = 8; const int controllerSize = 100; const int headsCount = 1; const int memoryN = 128; const int memoryM = 20; const int inputSize = vectorSize + 2; const int outputSize = vectorSize; //TODO remove rand NeuralTuringMachine machine = new NeuralTuringMachine(vectorSize + 2, vectorSize, controllerSize, headsCount, memoryN, memoryM, new RandomWeightInitializer(rand)); //TODO extract weight count calculation int headUnitSize = Head.GetUnitSize(memoryM); var weightsCount = (headsCount * memoryN) + (memoryN * memoryM) + (controllerSize * headsCount * memoryM) + (controllerSize * inputSize) + (controllerSize) + (outputSize * (controllerSize + 1)) + (headsCount * headUnitSize * (controllerSize + 1)); Console.WriteLine(weightsCount); RMSPropWeightUpdater rmsPropWeightUpdater = new RMSPropWeightUpdater(weightsCount, 0.95, 0.5, 0.001, 0.001); //NeuralTuringMachine machine = NeuralTuringMachine.Load(@"NTM_0.000583637804331003_2015-04-18T223455"); BPTTTeacher teacher = new BPTTTeacher(machine, rmsPropWeightUpdater); //for (int i = 1; i < 256; i++) //{ // var sequence = SequenceGenerator.GenerateSequence(i, vectorSize); // double[][] machineOutput = teacher.Train(sequence.Item1, sequence.Item2); // double error = CalculateLoss(sequence.Item2, machineOutput); // Console.WriteLine("{0},{1}", i, error); //} int minSeqLen = 200; int maxSeqLen = 200; double savingThreshold = 0.0005; for (int i = 1; i < 10000000; i++) { //var sequence = SequenceGenerator.GenerateSequence(rand.Next(20) + 1, vectorSize); var sequence = SequenceGenerator.GenerateSequence(rand.Next(minSeqLen, maxSeqLen), vectorSize); Stopwatch stopwatch = new Stopwatch(); stopwatch.Start(); double[][] headAddressings; double[][] machinesOutput = teacher.TrainVerbose(sequence.Item1, sequence.Item2, out headAddressings); stopwatch.Stop(); times[i % 100] = stopwatch.ElapsedMilliseconds; double error = CalculateLoss(sequence.Item2, machinesOutput); double averageError = error / (sequence.Item2.Length * sequence.Item2[0].Length); errors[i % 100] = error; if (reportStream != null) { reportStream.Set("Iteration", i); reportStream.Set("Average data loss", averageError); reportStream.Set("Training time", stopwatch.ElapsedMilliseconds); reportStream.Set("Sequence length", (sequence.Item1.Length - 2) / 2); reportStream.Set("Input", sequence.Item1); reportStream.Set("Known output", sequence.Item2); reportStream.Set("Real output", machinesOutput); reportStream.Set("Head addressings", headAddressings); reportStream.SendData(); } if (i % 100 == 0) { double averageError2 = errors.Average(); Console.WriteLine( "Iteration: {0}, error: {1}, iterations per second: {2:0.0} MinSeqLen: {3} MaxSeqLen: {4}", i, averageError2, 1000 / times.Average(), minSeqLen, maxSeqLen); if (averageError2 < savingThreshold) { savingThreshold /= 2; machine.Save("NTM_" + averageError2 + "_" + DateTime.Now.ToString("s").Replace(":", "")); maxSeqLen++; minSeqLen++; } } if (i % 100000 == 0) { machine.Save("NTM_" + i + DateTime.Now.ToString("s").Replace(":", "")); } } }
static void Main() { DataStream reportStream = null; try { YoVisionClientHelper yoVisionClientHelper = new YoVisionClientHelper(); yoVisionClientHelper.Connect(EndpointType.NetTcp, 8081, "localhost", "YoVisionServer"); reportStream = yoVisionClientHelper.RegisterDataStream("NGram task training", new Int32DataType("Iteration"), new DoubleDataType("Average data loss"), new Double2DArrayType("Input"), new Double2DArrayType("Known output"), new Double2DArrayType("Real output"), new Double2DArrayType("Head addressings")); } catch (Exception ex) { Console.WriteLine(ex.Message); } const int controllerSize = 100; const int headsCount = 1; const int memoryN = 128; const int memoryM = 20; const int inputSize = 1; const int outputSize = 1; Random rand = new Random(42); NeuralTuringMachine machine = new NeuralTuringMachine(inputSize, outputSize, controllerSize, headsCount, memoryN, memoryM, new RandomWeightInitializer(rand)); int headUnitSize = Head.GetUnitSize(memoryM); var weightsCount = (headsCount * memoryN) + (memoryN * memoryM) + (controllerSize * headsCount * memoryM) + (controllerSize * inputSize) + (controllerSize) + (outputSize * (controllerSize + 1)) + (headsCount * headUnitSize * (controllerSize + 1)); Console.WriteLine(weightsCount); RMSPropWeightUpdater rmsPropWeightUpdater = new RMSPropWeightUpdater(weightsCount, 0.95, 0.5, 0.001, 0.001); BPTTTeacher teacher = new BPTTTeacher(machine, rmsPropWeightUpdater); long[] times = new long[100]; for (int i = 1; i < 10000000; i++) { Tuple<double[][], double[][]> data = SequenceGenerator.GenerateSequence(SequenceGenerator.GeneratePropabilities()); Stopwatch stopwatch = new Stopwatch(); stopwatch.Start(); double[][] headAddressings; double[][] output = teacher.TrainVerbose(data.Item1, data.Item2, out headAddressings); stopwatch.Stop(); times[i % 100] = stopwatch.ElapsedMilliseconds; if (i%10 == 0) { double loss = CalculateLogLoss(output, data.Item2); if (reportStream != null) { reportStream.Set("Iteration", i); reportStream.Set("Average data loss", loss); reportStream.Set("Input", data.Item1); reportStream.Set("Known output", data.Item2); reportStream.Set("Real output", output); reportStream.Set("Head addressings", headAddressings); reportStream.SendData(); } } if (i%100 == 0) { Console.WriteLine("Iteration: {0}, iterations per second: {1:0.0}", i, 1000 / times.Average()); } if (i%1000 == 0) { double[] props = SequenceGenerator.GeneratePropabilities(); const int sampleCount = 100; double[] losses = new double[sampleCount]; for (int j = 0; j < sampleCount; j++) { Tuple<double[][], double[][]> sequence = SequenceGenerator.GenerateSequence(props); var machineOutput = teacher.Train(sequence.Item1, sequence.Item2); double[][] knownOutput = sequence.Item2; double loss = CalculateLogLoss(machineOutput, knownOutput); losses[j] = -loss; } Console.WriteLine("Loss [bits per sequence]: {0}", losses.Average()); } if (i % 1000 == 0) { machine.Save("NTM_" + i + DateTime.Now.ToString("s").Replace(":", "")); } } }