Пример #1
0
        public Tensor GetInputAsTensor(int idx = 0, int batchCount = -1, int fromBatch = 0)
        {
            if (rawTestSet != null)
            {
                throw new Exception("GetInputAsTensor is not supported for RAW test suites");
            }

            var shape         = GetInputShape(idx);
            var array         = GetInputData(idx);
            var maxBatchCount = array.Length / (shape[1] * shape[2] * shape[3]);

            fromBatch = Math.Min(fromBatch, maxBatchCount - 1);
            if (batchCount < 0)
            {
                batchCount = maxBatchCount - fromBatch;
            }

            // pad data with 0s, if test-set doesn't have enough batches:
            // 1) new ArrayTensorData() will initialize to 0
            // 2) Upload will copy as much data as test-set has into ArrayTensorData
            var tensorShape = new TensorShape(batchCount, shape[1], shape[2], shape[3]);
            var data        = new ArrayTensorData(tensorShape.length);

            data.Upload(array, fromBatch * tensorShape.flatWidth, Math.Min(batchCount, maxBatchCount - fromBatch) * tensorShape.flatWidth);

            var res = new Tensor(tensorShape, data);

            res.name = GetInputName(idx);

            return(res);
        }
Пример #2
0
        /// <summary>
        /// Get input as `Tensor`
        /// </summary>
        /// <param name="idx">input index</param>
        /// <param name="batchCount">max batch count</param>
        /// <param name="fromBatch">start from batch</param>
        /// <returns>`Tensor`</returns>
        /// <exception cref="Exception">thrown if called on raw test set (only JSON test set is supported)</exception>
        public Tensor GetInputAsTensor(int idx = 0, int batchCount = -1, int fromBatch = 0)
        {
            if (rawTestSet != null)
            {
                throw new Exception("GetInputAsTensor is not supported for RAW test suites");
            }

            TensorShape shape = GetInputShape(idx);

            Assert.IsTrue(shape.sequenceLength == 1 && shape.numberOfDirections == 1);
            var array         = GetInputData(idx);
            var maxBatchCount = array.Length / shape.flatWidth;

            fromBatch = Math.Min(fromBatch, maxBatchCount - 1);
            if (batchCount < 0)
            {
                batchCount = maxBatchCount - fromBatch;
            }

            // pad data with 0s, if test-set doesn't have enough batches
            var shapeArray = shape.ToArray();

            shapeArray[TensorShape.DataBatch] = batchCount;
            var tensorShape             = new TensorShape(shapeArray);
            var managedBufferStartIndex = fromBatch * tensorShape.flatWidth;
            var count = Math.Min(batchCount, maxBatchCount - fromBatch) * tensorShape.flatWidth;

            float[] dataToUpload = new float[tensorShape.length];
            Array.Copy(array, managedBufferStartIndex, dataToUpload, 0, count);

            var data = new ArrayTensorData(tensorShape.length);

            data.Upload(dataToUpload, tensorShape, 0);

            var res = new Tensor(tensorShape, data);

            res.name = GetInputName(idx);
            res.name = res.name.EndsWith(":0") ? res.name.Remove(res.name.Length - 2) : res.name;

            return(res);
        }