public override void InitializeNetwork() { // m_Layers = new ANNLayer[m_Parameters.m_NumHiddenLayers + 1]; //create neurons in hidden layers for (int i = 0; i < m_Parameters.m_NumHiddenLayers; i++) { if (i == 0) { m_Layers[i] = new ANNLayer(m_InputCount, m_Parameters.m_NeuronsInHiddenLayer, m_Parameters.m_ActFunction); } else { m_Layers[i] = new ANNLayer(m_Parameters.m_NeuronsInHiddenLayer, m_Parameters.m_NeuronsInHiddenLayer, m_Parameters.m_ActFunction); } } //create neurons and error array for the last layer, which is usualy 1 m_Layers[m_Parameters.m_NumHiddenLayers] = new ANNLayer(m_Parameters.m_NeuronsInHiddenLayer, m_OutputCount, m_Parameters.m_ActFunction); }
public override void InitializeNetwork() { // m_Layers = new Layer[m_Parameters.m_NumHiddenLayers + 1]; //create neurons in hidden layers for (int i = 0; i < m_Parameters.m_NumHiddenLayers; i++) { if (i == 0) { m_Layers[i] = new ANNLayer(m_InputCount, m_Parameters.m_NeuronsInHiddenLayer, m_Parameters.m_ActFunction); } else { m_Layers[i] = new ANNLayer(m_Parameters.m_NeuronsInHiddenLayer, m_Parameters.m_NeuronsInHiddenLayer, m_Parameters.m_ActFunction); } } //create neurons array for the last layer, with logistic Sigfmoid activation Layer ly = new ANNLayer(m_Parameters.m_NeuronsInHiddenLayer, m_OutputCount, new Sigmoid(1.0)); m_Layers[m_Parameters.m_NumHiddenLayers] = ly; }