Exemplo n.º 1
0
        /**
         * Reset this instances persistent variables to be used between called to
         * particleFiltering().
         *
         * @param N
         *            the number of samples to be maintained
         * @param dbn
         *            a DBN with prior <b>P</b>(<b>X</b><sub>0</sub>), transition
         *            model <b>P</b>(<b>X</b><sub>1</sub> | <b>X</b><sub>0</sub>),
         *            sensor model <b>P</b>(<b>E</b><sub>1</sub> |
         *            <b>X</b><sub>1</sub>)
         */
        public void initPersistent(int N, IDynamicBayesianNetwork dbn)
        {
            this.N   = N;
            this.dbn = dbn;
            // persistent: S, a vector of samples of size N, initially generated
            // from <b>P</b>(<b>X</b><sub>0</sub>)
            S     = new AssignmentProposition[N][];
            S_tp1 = new AssignmentProposition[N][];
            int[] indexes = new int[N];
            for (int i = 0; i < N; ++i)
            {
                S[i]       = new AssignmentProposition[this.dbn.GetX_0().Size()];
                S_tp1[i]   = new AssignmentProposition[this.dbn.GetX_0().Size()];
                indexes[i] = i;
                IMap <IRandomVariable, object> sample = priorSampler.priorSample(this.dbn.GetPriorNetwork());
                int idx = 0;
                foreach (var sa in sample)
                {
                    S[i][idx]     = new AssignmentProposition(this.dbn.GetX_0_to_X_1().Get(sa.GetKey()), sa.GetValue());
                    S_tp1[i][idx] = new AssignmentProposition(this.dbn.GetX_0_to_X_1().Get(sa.GetKey()), sa.GetValue());
                    idx++;
                }
            }

            sensorModel   = new FiniteBayesModel(dbn, new EliminationAsk());
            sampleIndexes = new RandVar("SAMPLE_INDEXES", new FiniteIntegerDomain(indexes));
        }
Exemplo n.º 2
0
        // function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of
        // <b>P</b>(X|e)

        /**
         * The REJECTION-SAMPLING algorithm in Figure 14.14. For answering queries
         * given evidence in a Bayesian Network.
         *
         * @param X
         *            the query variables
         * @param e
         *            observed values for variables E
         * @param bn
         *            a Bayesian network
         * @param Nsamples
         *            the total number of samples to be generated
         * @return an estimate of <b>P</b>(X|e)
         */
        public ICategoricalDistribution rejectionSampling(IRandomVariable[] X, AssignmentProposition[] e, IBayesianNetwork bn, int Nsamples)
        {
            // local variables: <b>N</b>, a vector of counts for each value of X,
            // initially zero
            double[] N = new double[ProbUtil.expectedSizeOfCategoricalDistribution(X)];

            // for j = 1 to N do
            for (int j = 0; j < Nsamples; j++)
            {
                // <b>x</b> <- PRIOR-SAMPLE(bn)
                IMap <IRandomVariable, object> x = ps.priorSample(bn);
                // if <b>x</b> is consistent with e then
                if (isConsistent(x, e))
                {
                    // <b>N</b>[x] <- <b>N</b>[x] + 1
                    // where x is the value of X in <b>x</b>
                    N[ProbUtil.indexOf(X, x)] += 1.0;
                }
            }
            // return NORMALIZE(<b>N</b>)
            return(new ProbabilityTable(N, X).normalize());
        }