public override int GetHashCode()
 {
     unchecked
     {
         var hashCode = RegressionWeighting.GetHashCode();
         hashCode = (hashCode * 397) ^ RegressionFit.GetHashCode();
         hashCode = (hashCode * 397) ^ NormalizationMethod.GetHashCode();
         hashCode = (hashCode * 397) ^ MsLevel.GetHashCode();
         hashCode = (hashCode * 397) ^ (Units == null ? 0 : Units.GetHashCode());
         return(hashCode);
     }
 }
        void IXmlSerializable.ReadXml(XmlReader reader)
        {
            RegressionWeighting = RegressionWeighting.Parse(reader.GetAttribute(Attr.weighting));
            RegressionFit       = RegressionFit.Parse(reader.GetAttribute(Attr.fit));
            NormalizationMethod = NormalizationMethod.FromName(reader.GetAttribute(Attr.normalization));
            MsLevel             = reader.GetNullableIntAttribute(Attr.ms_level);
            Units = reader.GetAttribute(Attr.units);
            bool empty = reader.IsEmptyElement;

            reader.Read();
            if (!empty)
            {
                reader.ReadEndElement();
            }
        }
Exemplo n.º 3
0
 public override int GetHashCode()
 {
     unchecked
     {
         var hashCode = RegressionWeighting.GetHashCode();
         hashCode = (hashCode * 397) ^ RegressionFit.GetHashCode();
         hashCode = (hashCode * 397) ^ NormalizationMethod.GetHashCode();
         hashCode = (hashCode * 397) ^ MsLevel.GetHashCode();
         hashCode = (hashCode * 397) ^ (Units == null ? 0 : Units.GetHashCode());
         hashCode = (hashCode * 397) ^ LodCalculation.GetHashCode();
         hashCode = (hashCode * 397) ^ MaxLoqBias.GetHashCode();
         hashCode = (hashCode * 397) ^ MaxLoqCv.GetHashCode();
         hashCode = (hashCode * 397) ^ SimpleRatios.GetHashCode();
         return(hashCode);
     }
 }
Exemplo n.º 4
0
        void IXmlSerializable.ReadXml(XmlReader reader)
        {
            RegressionWeighting = RegressionWeighting.Parse(reader.GetAttribute(Attr.weighting));
            RegressionFit       = RegressionFit.Parse(reader.GetAttribute(Attr.fit));
            NormalizationMethod = NormalizationMethod.FromName(reader.GetAttribute(Attr.normalization));
            MsLevel             = reader.GetNullableIntAttribute(Attr.ms_level);
            Units          = reader.GetAttribute(Attr.units);
            LodCalculation = LodCalculation.Parse(reader.GetAttribute(Attr.lod_calculation));
            MaxLoqBias     = reader.GetNullableDoubleAttribute(Attr.max_loq_bias);
            MaxLoqCv       = reader.GetNullableDoubleAttribute(Attr.max_loq_cv);
            bool empty = reader.IsEmptyElement;

            reader.Read();
            if (!empty)
            {
                reader.ReadEndElement();
            }
        }
 public QuantificationSettings ChangeRegressionFit(RegressionFit regressionFit)
 {
     return(ChangeProp(ImClone(this), im => im.RegressionFit = regressionFit));
 }
Exemplo n.º 6
0
 public CalibrationCurve ChangeRegressionFit(RegressionFit regressionFit)
 {
     return(ChangeProp(ImClone(this), im => im.RegressionFit = regressionFit));
 }
Exemplo n.º 7
0
 public CalibrationCurve(RegressionFit regressionFit)
 {
     RegressionFit = regressionFit;
 }
Exemplo n.º 8
0
 public double?GetX(double?y)
 {
     return(RegressionFit.GetX(this, y));
 }
Exemplo n.º 9
0
 public double?GetY(double?x)
 {
     return(RegressionFit.GetY(this, x));
 }
Exemplo n.º 10
0
 public QuantificationSettings ChangeRegressionFit(RegressionFit regressionFit)
 {
     return ChangeProp(ImClone(this), im => im.RegressionFit = regressionFit);
 }