Exemplo n.º 1
0
 /// <summary>
 /// Assignes vector to this cluster. </summary>
 /// <param name="vector"> vector to assign </param>
 public virtual void assignVector(KVector vector)
 {
     // if vector's cluster is allready set to this, save some cpu cycles
     if (vector.Cluster != this)
     {
         vector.Cluster = this;
         vectors.Add(vector);
     }
 }
Exemplo n.º 2
0
        public KMeansClustering(DataSet dataSet, int numberOfClusters)
        {
            this.dataSet          = dataSet;
            this.numberOfClusters = numberOfClusters;
            this.dataVectors      = new KVector[dataSet.size()];
            // iterate dataset and create dataVectors field
            int i = 0;

            foreach (DataSetRow row in dataSet.Rows)
            {
                KVector vector = new KVector(row.Input);
                this.dataVectors[i] = vector;
                i++;
            }
        }
Exemplo n.º 3
0
        /// <summary>
        /// Calculates and returns euclidean distance of this vector from the given cluster </summary>
        /// <param name="cluster"> </param>
        /// <returns> euclidean distance of this vector from given cluster </returns>
        public virtual double distanceFrom(KVector otherVector)
        {
            // get values and do this in loop
            double[] otherValues = otherVector.Values;

            double distance = 0;

            for (int i = 0; i < values.Length; i++)
            {
                distance += Math.Pow(otherValues[i] - values[i], 2);
            }

            distance = Math.Sqrt(distance);

            return(distance);
        }
Exemplo n.º 4
0
        /// <summary>
        /// Find and return the nearest cluster for the specified vector </summary>
        /// <param name="vector"> </param>
        /// <returns>  </returns>
        private Cluster getNearestCluster(KVector vector)
        {
            Cluster nearestCluster             = null;
            double  minimumDistanceFromCluster = double.MaxValue;
            double  distanceFromCluster        = 0;

            foreach (Cluster cluster in clusters)
            {
                distanceFromCluster = vector.distanceFrom(cluster.Centroid);
                if (distanceFromCluster < minimumDistanceFromCluster)
                {
                    minimumDistanceFromCluster = distanceFromCluster;
                    nearestCluster             = cluster;
                }
            }

            return(nearestCluster);
        }
Exemplo n.º 5
0
        // find initial values for centroids/clusters
        // dont need to return string this is just for debuging and output in dialog
        // forgy and random partitions
        // http://en.wikipedia.org/wiki/K-means_clustering
        public virtual void initClusters()
        {
            List <int> idxList = new List <int>();

            for (int i = 0; i < dataSet.size(); i++)
            {
                idxList.Add(i);
            }
            Shuffle(idxList);

            //   log.append("Clusters initialized at:\n\n");

            clusters = new Cluster[numberOfClusters];
            for (int i = 0; i < numberOfClusters; i++)
            {
                clusters[i] = new Cluster();
                int     randomIdx    = idxList[i];
                KVector randomVector = dataVectors[randomIdx];
                clusters[i].Centroid = randomVector;
                //log.append(randomVector.toString()+System.lineSeparator() );
            }
            //log.append(System.lineSeparator());
        }
Exemplo n.º 6
0
 public virtual void removePoint(KVector point)
 {
     vectors.Remove(point);
 }