Exemplo n.º 1
0
        /// <summary>
        /// Sprawdzania do jakiej klasy pasuje podany przez uzytkownika punkt
        /// </summary>
        /// <param name="dataSet"></param>
        /// <param name="testSet"></param>
        /// <param name="userObj"></param>
        /// <param name="kValue"></param>
        public static void EvaluateInput(List <DataPoint> dataSet, List <DataPoint> testSet, DataPoint userObj, int kValue)
        {
            double sl, sw, pl, pw, distance;
            List <EvaluatedPoint> evaluation = new List <EvaluatedPoint>();

            foreach (var point in dataSet)
            {
                if (!testSet.Contains(point))
                {
                    // Obliczanie metryki eukledisowej
                    sl = Math.Pow(point.sepal_length - userObj.sepal_length, 2);
                    sw = Math.Pow(point.sepal_width - userObj.sepal_width, 2);
                    pl = Math.Pow(point.petal_length - userObj.petal_length, 2);
                    pw = Math.Pow(point.petal_width - userObj.petal_width, 2);

                    distance = Math.Sqrt(sl + sw + pl + pw);

                    EvaluatedPoint evaluatedPoint = new EvaluatedPoint()
                    {
                        sepal_length = point.sepal_length,
                        sepal_width  = point.sepal_width,
                        petal_length = point.petal_length,
                        petal_width  = point.petal_width,
                        species      = point.species,
                        Distance     = distance
                    };

                    evaluation.Add(evaluatedPoint);
                }
            }

            // Lista opracowanych rezultatów
            var results = evaluation
                          .OrderBy(x => x.Distance)          // Posortuj
                          .Take(kValue)                      // Weź k najlepszych
                          .GroupBy(x => x.species)           // Pogrupuj
                          .OrderByDescending(x => x.Count()) // Znajdz najlepszych
                          .ToList();

            // Ilość punktów Virginica
            double virginicaAmount = evaluation
                                     .OrderBy(x => x.Distance)
                                     .Take(kValue)
                                     .Where(x => x.species == "virginica")
                                     .Count();
            // Ilość punktów Versicolor
            double versicolorAmount = evaluation
                                      .OrderBy(x => x.Distance)
                                      .Take(kValue)
                                      .Where(x => x.species == "versicolor")
                                      .Count();;
            // Ilość punktów Setosa
            double setosaAmount = evaluation
                                  .OrderBy(x => x.Distance)
                                  .Take(kValue)
                                  .Where(x => x.species == "setosa")
                                  .Count();

            string bestGuess = results
                               .OrderByDescending(x => x.Select(x => x.Distance))
                               .Select(x => x.Select(x => x.species))
                               .Take(1)
                               .ToString();

            Console.WriteLine("\nPodany punkt (procentowa szansa zgodności):");
            Console.WriteLine($"   Virginica:  {(virginicaAmount / kValue) * 100}%");
            Console.WriteLine($"   Versicolor: {(versicolorAmount / kValue) * 100}%");
            Console.WriteLine($"   Setosa:     {(setosaAmount / kValue) * 100}%");
        }
Exemplo n.º 2
0
        /// <summary>
        /// Sprawdza punkty w zestawie testowym. Dla każdegu puntu sprawdza K liczbę sąsiadów i porównuje ją z istniejącym w zestawie elementem. Wyświetla
        /// procent będądy ilościa poprawie zgadniętych punktów.
        /// </summary>
        /// <param name="dataSet"></param>
        /// <param name="testSet"></param>
        /// <param name="kValue"></param>
        /// <param name="trainSet"></param>
        public static void EvaluateTest(List <DataPoint> dataSet, List <DataPoint> testSet, int kValue, List <DataPoint> trainSet)
        {
            double goodGuess = 0;

            foreach (var testPoint in testSet)
            {
                double sl, sw, pl, pw, distance;
                List <EvaluatedPoint> evaluation = new List <EvaluatedPoint>();

                foreach (var dataPoints in dataSet.Except(testSet).ToList())
                {
                    if (true)
                    {
                        // Obliczanie metryki eukledisowej
                        sl = Math.Abs(Math.Pow(dataPoints.sepal_length - testPoint.sepal_length, 2));
                        sw = Math.Abs(Math.Pow(dataPoints.sepal_width - testPoint.sepal_width, 2));
                        pl = Math.Abs(Math.Pow(dataPoints.petal_length - testPoint.petal_length, 2));
                        pw = Math.Abs(Math.Pow(dataPoints.petal_width - testPoint.petal_width, 2));

                        distance = Math.Sqrt(sl + sw + pl + pw);

                        EvaluatedPoint evaluatedPoint = new EvaluatedPoint()
                        {
                            sepal_length = dataPoints.sepal_length,
                            sepal_width  = dataPoints.sepal_width,
                            petal_length = dataPoints.petal_length,
                            petal_width  = dataPoints.petal_width,
                            species      = dataPoints.species,
                            Distance     = distance
                        };

                        evaluation.Add(evaluatedPoint);
                    }
                }

                // Lista opracowanych rezultatów
                var results = evaluation
                              .OrderBy(x => x.Distance)          // Posortuj
                              .Take(kValue)                      // Weź k najlepszych
                              .GroupBy(x => x.species)           // Pogrupuj
                              .OrderByDescending(x => x.Count()) // Znajdz najlepszych
                              .ToList();

                // Ilość punktów Virginica
                double virginicaAmount = evaluation
                                         .OrderBy(x => x.Distance)
                                         .Take(kValue)
                                         .Where(x => x.species == "virginica")
                                         .Count();
                // Ilość punktów Versicolor
                double versicolorAmount = evaluation
                                          .OrderBy(x => x.Distance)
                                          .Take(kValue)
                                          .Where(x => x.species == "versicolor")
                                          .Count();;
                // Ilość punktów Setosa
                double setosaAmount = evaluation
                                      .OrderBy(x => x.Distance)
                                      .Take(kValue)
                                      .Where(x => x.species == "setosa")
                                      .Count();

                string bestGuess = "";
                if (virginicaAmount > versicolorAmount && virginicaAmount > setosaAmount)
                {
                    bestGuess = "virginica";
                }
                else if (versicolorAmount > virginicaAmount && versicolorAmount > setosaAmount)
                {
                    bestGuess = "versicolor";
                }
                else if (setosaAmount > virginicaAmount && setosaAmount > versicolorAmount)
                {
                    bestGuess = "setosa";
                }

                int count = dataSet
                            .Where(x => x.petal_length == testPoint.petal_length)
                            .Where(x => x.petal_width == testPoint.petal_width)
                            .Where(x => x.sepal_length == testPoint.sepal_length)
                            .Where(x => x.sepal_width == testPoint.sepal_width)
                            .Where(x => x.species == bestGuess)
                            .Distinct()
                            .Count();

                if (count > 0)
                {
                    goodGuess++;
                }
            }
            Console.WriteLine($"Ogólna poprawność:");
            Console.WriteLine($"   Zestaw danych: {(goodGuess / testSet.Count()) * 100}%");
        }