Exemplo n.º 1
0
        /// <summary>
        /// Computes the similarity for the result object
        /// </summary>
        /// <param name="result">The result object, previously created with <see cref="Prepare(IEnumerable{HtmlNode}, string, List{string})" /></param>
        /// <param name="output">The output.</param>
        /// <param name="documents">Optional: select subset of documents to be analysed. These must be within <see cref="result" /> inner collections</param>
        /// <returns>
        /// The same result object specified in parameters
        /// </returns>
        public DocumentSimilarityResult ComputeSimilarity(DocumentSimilarityResult result, ITextRender output, List <HtmlNode> documents = null)
        {
            if (documents.isNullOrEmpty())
            {
                documents = result.LeafDictionaryByDocuments.Keys.ToList();
            }

            List <ComputeSimilarityTask> tasks = new List <ComputeSimilarityTask>();

            for (int i = 0; i < documents.Count - 1; i++)
            {
                for (int y = i + 1; y < documents.Count; y++)
                {
                    ComputeSimilarityTask task = new ComputeSimilarityTask()
                    {
                        documentA = documents[i],
                        documentB = documents[y],
                        nGrams_A  = result.NGramsByDocuments[documents[i]],
                        nGrams_B  = result.NGramsByDocuments[documents[y]]
                    };
                    tasks.Add(task);

                    //var documentA = ;
                    //var documentB = documents[y];

                    //var ABResult = ComputeSimilarity(documentA, documentB, result);
                    //result.AddResult(ABResult);
                }
            }

            var task_chunks = tasks.SplitBySize((tasks.Count / 5));

            foreach (var task_chunk in task_chunks)
            {
                output.AppendLine("Executing similarity computation task chunk [size:" + task_chunk.Count + "] " + task_chunks.IndexOf(task_chunk) + " of " + task_chunks.Count);

                Parallel.ForEach <ComputeSimilarityTask>(task_chunk, x =>
                {
                    ComputeSimilarity(x);
                }
                                                         );

                foreach (var task in task_chunk)
                {
                    if (task.output != null)
                    {
                        result.AddResult(task.output);
                    }
                }
            }



            return(result);
        }
Exemplo n.º 2
0
        /// <summary>
        /// Builds <see cref="LeafNodeDictionary"/> and <see cref="LeafNodeDictionaryEntryNGram"/>s for each document, to allow performance optimization
        /// </summary>
        /// <param name="documents">The documents.</param>
        /// <param name="leafSelectXPath">The leaf select x path, leave blank to use from settings, <see cref="DocumentSimilaritySettings.XPathToSelectLeafs"/></param>
        /// <param name="tagsToIgnore">The tags to ignore, leave unspecified to use from settings, <see cref="DocumentSimilaritySettings.TagsToIgnore"/>.</param>
        /// <returns></returns>
        public DocumentSimilarityResult Prepare(IEnumerable <HtmlNode> documents, String leafSelectXPath = "", List <String> tagsToIgnore = null)
        {
            leafSelectXPath = leafSelectXPath.or(settings.XPathToSelectLeafs, LeafNodeDictionary.DefaultNodeSelectionXPath);
            tagsToIgnore    = tagsToIgnore.or(settings.TagsToIgnore, LeafNodeDictionary.DefaultTagsToIgnore);

            DocumentSimilarityResult result = new DocumentSimilarityResult();

            frequencyCounter <String> xpathCounter = new frequencyCounter <string>();

            Dictionary <HtmlNode, LeafNodeDictionary> leafDictionary = new Dictionary <HtmlNode, LeafNodeDictionary>();


            foreach (HtmlNode documentA in documents)
            {
                LeafNodeDictionary leafNodeDictionaryA = new LeafNodeDictionary(documentA, leafSelectXPath, tagsToIgnore);
                if (leafNodeDictionaryA.items.Count < 5)
                {
                }
                foreach (var entry in leafNodeDictionaryA.items)
                {
                    xpathCounter.Count(entry.XPath);
                }
                leafDictionary.Add(documentA, leafNodeDictionaryA);
            }

            var commonXPaths = xpathCounter.GetItemsWithTopFrequency();

            foreach (var pair in leafDictionary)
            {
                pair.Value.RemoveEntriesByXPath(commonXPaths);
            }

            foreach (HtmlNode documentA in documents)
            {
                try
                {
                    LeafNodeDictionary leafNodeDictionaryA = leafDictionary[documentA];

                    List <LeafNodeDictionaryEntryNGram> nGrams_A = setAnalysisTools <LeafNodeDictionaryEntry> .getNGramSet <LeafNodeDictionaryEntryNGram>(leafNodeDictionaryA.items, settings.nGramWidth, settings.nGramMode);

                    result.DocumentsByLeafDictionary.Add(leafNodeDictionaryA, documentA);
                    result.DocumentsByNGrams.Add(nGrams_A, documentA);
                    result.LeafDictionaryByDocuments.Add(documentA, leafNodeDictionaryA);
                    result.NGramsByDocuments.Add(documentA, nGrams_A);
                } catch (Exception ex)
                {
                    result.DocumentsWithExceptions.Add(documentA, ex);
                }
            }
            return(result);
        }
Exemplo n.º 3
0
        /// <summary>
        /// Computes similarity for two documents, that are part of result's inner collections
        /// </summary>
        /// <param name="documentA">The document a.</param>
        /// <param name="documentB">The document b.</param>
        /// <param name="result">The result object, previously created with <see cref="Prepare(IEnumerable{HtmlNode}, string, List{string})"/></param>
        /// <returns>Result for these two documents</returns>
        public DocumentSimilarityResultPair ComputeSimilarity(HtmlNode documentA, HtmlNode documentB, DocumentSimilarityResult result)
        {
            List <LeafNodeDictionaryEntryNGram> nGrams_A = result.NGramsByDocuments[documentA]; //setAnalysisTools<LeafNodeDictionaryEntry>.getNGramSet<LeafNodeDictionaryEntryNGram>(leafNodeDictionaryA.items, settings.nGramWidth, settings.nGramMode);
            List <LeafNodeDictionaryEntryNGram> nGrams_B = result.NGramsByDocuments[documentB]; //setAnalysisTools<LeafNodeDictionaryEntry>.getNGramSet<LeafNodeDictionaryEntryNGram>(leafNodeDictionaryB.items, settings.nGramWidth, settings.nGramMode);

            var score_StructureSimilarity = StructureSimilarity.GetSimilarity(nGrams_A, nGrams_B, settings.computationMethod);
            var score_ContentSimilarity   = ContentSimilarity.GetSimilarity(nGrams_A, nGrams_B, settings.computationMethod);

            DocumentSimilarityResultPair output = new DocumentSimilarityResultPair
            {
                itemA = documentA,
                itemB = documentB,
                StructureSimilarity = score_StructureSimilarity,
                ContentSimilarity   = score_ContentSimilarity
            };



            return(output);
        }