Exemplo n.º 1
0
        protected virtual void precompute_shells()
        {
            int nLayers = Slices.Count;

            LayerShells = new List <ShellsFillPolygon> [nLayers];
            gParallel.ForEach(Interval1i.Range(nLayers), (layeri) => {
                PlanarSlice slice   = Slices[layeri];
                LayerShells[layeri] = new List <ShellsFillPolygon>();

                List <GeneralPolygon2d> solids = slice.Solids;

                foreach (GeneralPolygon2d shape in solids)
                {
                    ShellsFillPolygon shells_gen  = new ShellsFillPolygon(shape);
                    shells_gen.PathSpacing        = Settings.SolidFillPathSpacingMM();
                    shells_gen.ToolWidth          = Settings.Machine.NozzleDiamMM;
                    shells_gen.Layers             = Settings.Shells;
                    shells_gen.InsetInnerPolygons = false;
                    shells_gen.Compute();
                    LayerShells[layeri].Add(shells_gen);

                    if (slice.Tags.Has(shape))
                    {
                        ShellTags.Add(shells_gen, slice.Tags.Get(shape));
                    }
                }
            });
        }
Exemplo n.º 2
0
        protected override void add_cavity_polygons(PlanarSlice slice, List <GeneralPolygon2d> polygons, PrintMeshOptions options)
        {
            slice.AddCavityPolygons(polygons);

            if (options.Extended != null && options.Extended is ExtendedPrintMeshOptions)
            {
                ExtendedPrintMeshOptions ext = options.Extended as ExtendedPrintMeshOptions;

                if (slice is PlanarSlicePro)
                {
                    PlanarSlicePro sp = slice as PlanarSlicePro;

                    if (ext.ClearanceXY != 0)
                    {
                        foreach (var poly in polygons)
                        {
                            sp.Cavity_Clearances.Add(poly, ext.ClearanceXY);
                        }
                    }

                    if (ext.OffsetXY != 0)
                    {
                        foreach (var poly in polygons)
                        {
                            sp.Cavity_Offsets.Add(poly, ext.OffsetXY);
                        }
                    }
                }
            }
        }
Exemplo n.º 3
0
        /// <summary>
        /// Add explicit support points for any small floating polygons.
        /// These can be used at toolpathing time to ensure support for
        /// such areas, which otherwise might be lost (or insufficiently
        /// supported) by the standard techniques to detect support regions.
        /// </summary>
        public void AddMinZTipSupportPoints(double tipDiamThresh = 2.0, int nExtraLayers = 0)
        {
            List <Vector3d> tips    = new List <Vector3d>();
            SpinLock        tiplock = new SpinLock();

            int N = Slices.Count;

            gParallel.ForEach(Interval1i.FromToInclusive(1, N - 1), (li) =>
            {
                PlanarSlice slice = Slices[li];
                PlanarSlice prev  = Slices[li - 1];
                foreach (GeneralPolygon2d poly in slice.InputSolids)
                {
                    AxisAlignedBox2d bounds = poly.Bounds;
                    if (bounds.MaxDim > tipDiamThresh)
                    {
                        continue;
                    }
                    Vector2d c     = bounds.Center;
                    bool contained = false;
                    foreach (var poly2 in prev.InputSolids)
                    {
                        if (poly2.Contains(c))
                        {
                            contained = true;
                            break;
                        }
                    }
                    if (contained)
                    {
                        continue;
                    }
                    bool entered = false;
                    tiplock.Enter(ref entered);
                    tips.Add(new Vector3d(c.x, c.y, li));
                    tiplock.Exit();
                }
            });

            foreach (var tip in tips)
            {
                int layer_i = (int)tip.z;
                int add_to  = Math.Min(N - 1, layer_i + nExtraLayers);
                for (int i = layer_i; i < add_to; ++i)
                {
                    Slices[i].InputSupportPoints.Add(tip.xy);
                }
            }
        }
Exemplo n.º 4
0
        /// <summary>
        /// Format is:
        /// [num_slices]
        /// [slice0_z]
        /// [num_polys_in_slice_0]
        /// [x0 y0 x1 y1 x2 y3 ...]
        /// [x0 y0 x1 y1 ... ]
        /// [slice1_z]
        /// [num_polys_in_slice_1]
        /// ...
        /// </summary>
        public void ReadSimpleSliceFormat(TextReader reader)
        {
            PlanarComplex.FindSolidsOptions options = PlanarComplex.FindSolidsOptions.SortPolygons;
            options.TrustOrientations = false;
            char[] splitchars = new char[] { ' ' };

            int nSlices = int.Parse(reader.ReadLine());

            PlanarComplex[] layer_complexes = new PlanarComplex[nSlices];

            for (int si = 0; si < nSlices; ++si)
            {
                PlanarSlice slice = new PlanarSlice();
                slice.Z = double.Parse(reader.ReadLine());

                PlanarComplex complex = new PlanarComplex();

                int nPolys = int.Parse(reader.ReadLine());
                for (int pi = 0; pi < nPolys; pi++)
                {
                    string[]  stringValues = reader.ReadLine().Split(splitchars, StringSplitOptions.RemoveEmptyEntries);
                    double[]  values       = Array.ConvertAll(stringValues, Double.Parse);
                    Polygon2d poly         = new Polygon2d(values);
                    if (poly.VertexCount < 3)
                    {
                        continue;
                    }
                    complex.Add(poly);
                }

                layer_complexes[si] = complex;

                //// this could be done in separate thread...
                //var solidInfo = complex.FindSolidRegions(options);
                //slice.InputSolids = solidInfo.Polygons;
                //slice.Resolve();

                Slices.Add(slice);
            }

            gParallel.ForEach(Interval1i.Range(nSlices), (si) =>
            {
                var solidInfo          = layer_complexes[si].FindSolidRegions(options);
                Slices[si].InputSolids = solidInfo.Polygons;
                Slices[si].Resolve();
            });
        }
Exemplo n.º 5
0
        protected virtual void add_solid_polygons(PlanarSlice slice, List <GeneralPolygon2d> polygons, PrintMeshOptions options)
        {
            slice.AddPolygons(polygons);

            if (options.ClearanceXY != 0)
            {
                foreach (var poly in polygons)
                {
                    slice.Clearances.Add(poly, options.ClearanceXY);
                }
            }

            if (options.OffsetXY != 0)
            {
                foreach (var poly in polygons)
                {
                    slice.Offsets.Add(poly, options.OffsetXY);
                }
            }
        }
Exemplo n.º 6
0
        public DMesh3 Make3DTubes(Interval1i layer_range, double merge_tol, double tube_radius)
        {
            Polygon2d tube_profile = Polygon2d.MakeCircle(tube_radius, 8);
            Frame3f   frame        = Frame3f.Identity;

            DMesh3 full_mesh = new DMesh3();

            foreach (int layer_i in layer_range)
            {
                PlanarSlice slice = Slices[layer_i];
                frame.Origin = new Vector3f(0, 0, slice.Z);
                foreach (GeneralPolygon2d gpoly in slice.Solids)
                {
                    List <Polygon2d> polys = new List <Polygon2d>()
                    {
                        gpoly.Outer
                    }; polys.AddRange(gpoly.Holes);
                    foreach (Polygon2d poly in polys)
                    {
                        Polygon2d simpPoly = new Polygon2d(poly);
                        simpPoly.Simplify(merge_tol, 0.01, true);
                        if (simpPoly.VertexCount < 3)
                        {
                            Util.gBreakToDebugger();
                        }
                        TubeGenerator tubegen = new TubeGenerator(simpPoly, frame, tube_profile)
                        {
                            NoSharedVertices = true
                        };
                        DMesh3 tubeMesh = tubegen.Generate().MakeDMesh();
                        MeshEditor.Append(full_mesh, tubeMesh);
                    }
                }
            }

            return(full_mesh);
        }
Exemplo n.º 7
0
 protected virtual void add_crop_region_polygons(PlanarSlice slice, List <GeneralPolygon2d> polygons, PrintMeshOptions options)
 {
     slice.AddCropRegions(polygons);
 }
Exemplo n.º 8
0
 protected virtual void add_support_polygons(PlanarSlice slice, List <GeneralPolygon2d> polygons, PrintMeshOptions options)
 {
     slice.AddSupportPolygons(polygons);
 }
Exemplo n.º 9
0
        /// <summary>
        /// Slice the meshes and return the slice stack.
        /// </summary>
        public PlanarSliceStack Compute()
        {
            if (Meshes.Count == 0)
            {
                return(new PlanarSliceStack());
            }

            Interval1d zrange = Interval1d.Empty;

            foreach (var meshinfo in Meshes)
            {
                zrange.Contain(meshinfo.bounds.Min.z);
                zrange.Contain(meshinfo.bounds.Max.z);
            }
            if (SetMinZValue != double.MinValue)
            {
                zrange.a = SetMinZValue;
            }

            // construct layers
            List <PlanarSlice> slice_list = new List <PlanarSlice>();

            double cur_layer_z = zrange.a;
            int    layer_i     = 0;

            while (cur_layer_z < zrange.b)
            {
                double     layer_height = get_layer_height(layer_i);
                double     z            = cur_layer_z;
                Interval1d zspan        = new Interval1d(z, z + layer_height);
                if (SliceLocation == SliceLocations.EpsilonBase)
                {
                    z += 0.01 * layer_height;
                }
                else if (SliceLocation == SliceLocations.MidLine)
                {
                    z += 0.5 * layer_height;
                }

                PlanarSlice slice = SliceFactoryF(zspan, z, layer_i);
                slice.EmbeddedPathWidth = OpenPathDefaultWidthMM;
                slice_list.Add(slice);

                layer_i++;
                cur_layer_z += layer_height;
            }
            int NH = slice_list.Count;

            if (NH > MaxLayerCount)
            {
                throw new Exception("MeshPlanarSlicer.Compute: exceeded layer limit. Increase .MaxLayerCount.");
            }

            PlanarSlice[] slices = slice_list.ToArray();

            // determine if we have crop objects
            bool have_crop_objects = false;

            foreach (var mesh in Meshes)
            {
                if (mesh.options.IsCropRegion)
                {
                    have_crop_objects = true;
                }
            }

            // assume Resolve() takes 2x as long as meshes...
            TotalCompute = (Meshes.Count * NH) + (2 * NH);
            Progress     = 0;

            // compute slices separately for each mesh
            for (int mi = 0; mi < Meshes.Count; ++mi)
            {
                if (Cancelled())
                {
                    break;
                }

                DMesh3           mesh         = Meshes[mi].mesh;
                PrintMeshOptions mesh_options = Meshes[mi].options;

                // [TODO] should we hang on to this spatial? or should it be part of assembly?
                DMeshAABBTree3   spatial = new DMeshAABBTree3(mesh, true);
                AxisAlignedBox3d bounds  = Meshes[mi].bounds;

                bool is_cavity   = mesh_options.IsCavity;
                bool is_crop     = mesh_options.IsCropRegion;
                bool is_support  = mesh_options.IsSupport;
                bool is_closed   = (mesh_options.IsOpen) ? false : mesh.IsClosed();
                var  useOpenMode = (mesh_options.OpenPathMode == OpenPathsModes.Default) ?
                                   DefaultOpenPathMode : mesh_options.OpenPathMode;

                // each layer is independent so we can do in parallel
                gParallel.ForEach(Interval1i.Range(NH), (i) =>
                {
                    if (Cancelled())
                    {
                        return;
                    }

                    double z = slices[i].Z;
                    if (z < bounds.Min.z || z > bounds.Max.z)
                    {
                        return;
                    }

                    // compute cut
                    Polygon2d[] polys; PolyLine2d[] paths;
                    compute_plane_curves(mesh, spatial, z, is_closed, out polys, out paths);

                    // if we didn't hit anything, try again with jittered plane
                    // [TODO] this could be better...
                    if ((is_closed && polys.Length == 0) || (is_closed == false && polys.Length == 0 && paths.Length == 0))
                    {
                        double jitterz = slices[i].LayerZSpan.Interpolate(0.75);
                        compute_plane_curves(mesh, spatial, jitterz, is_closed, out polys, out paths);
                    }

                    if (is_closed)
                    {
                        // construct planar complex and "solids"
                        // (ie outer polys and nested holes)
                        PlanarComplex complex = new PlanarComplex();
                        foreach (Polygon2d poly in polys)
                        {
                            complex.Add(poly);
                        }

                        PlanarComplex.FindSolidsOptions options
                            = PlanarComplex.FindSolidsOptions.Default;
                        options.WantCurveSolids            = false;
                        options.SimplifyDeviationTolerance = 0.001;
                        options.TrustOrientations          = true;
                        options.AllowOverlappingHoles      = true;

                        PlanarComplex.SolidRegionInfo solids   = complex.FindSolidRegions(options);
                        List <GeneralPolygon2d> solid_polygons = ApplyValidRegions(solids.Polygons);

                        if (is_support)
                        {
                            add_support_polygons(slices[i], solid_polygons, mesh_options);
                        }
                        else if (is_cavity)
                        {
                            add_cavity_polygons(slices[i], solid_polygons, mesh_options);
                        }
                        else if (is_crop)
                        {
                            add_crop_region_polygons(slices[i], solid_polygons, mesh_options);
                        }
                        else
                        {
                            add_solid_polygons(slices[i], solid_polygons, mesh_options);
                        }
                    }
                    else if (useOpenMode != OpenPathsModes.Ignored)
                    {
                        // [TODO]
                        //   - does not really handle clipped polygons properly, there will be an extra break somewhere...
                        List <PolyLine2d> all_paths = new List <PolyLine2d>(paths);
                        foreach (Polygon2d poly in polys)
                        {
                            all_paths.Add(new PolyLine2d(poly, true));
                        }

                        List <PolyLine2d> open_polylines = ApplyValidRegions(all_paths);
                        foreach (PolyLine2d pline in open_polylines)
                        {
                            if (useOpenMode == OpenPathsModes.Embedded)
                            {
                                slices[i].AddEmbeddedPath(pline);
                            }
                            else
                            {
                                slices[i].AddClippedPath(pline);
                            }
                        }
                    }

                    Interlocked.Increment(ref Progress);
                });  // end of parallel.foreach
            } // end mesh iter

            // resolve planar intersections, etc
            gParallel.ForEach(Interval1i.Range(NH), (i) =>
            {
                if (Cancelled())
                {
                    return;
                }

                if (have_crop_objects && slices[i].InputCropRegions.Count == 0)
                {
                    // don't resolve, we have fully cropped this layer
                }
                else
                {
                    slices[i].Resolve();
                }

                Interlocked.Add(ref Progress, 2);
            });

            // discard spurious empty slices
            int last = slices.Length - 1;

            while (slices[last].IsEmpty && last > 0)
            {
                last--;
            }
            int first = 0;

            if (DiscardEmptyBaseSlices || have_crop_objects)
            {
                while (slices[first].IsEmpty && first < slices.Length)
                {
                    first++;
                }
            }

            PlanarSliceStack stack = SliceStackFactoryF();

            for (int k = first; k <= last; ++k)
            {
                stack.Add(slices[k]);
            }

            if (SupportMinZTips)
            {
                stack.AddMinZTipSupportPoints(MinZTipMaxDiam, MinZTipExtraLayers);
            }

            return(stack);
        }
Exemplo n.º 10
0
 protected virtual void add_cavity_polygons(PlanarSlice slice, List <GeneralPolygon2d> polygons, PrintMeshOptions options)
 {
     slice.AddCavityPolygons(polygons);
 }
Exemplo n.º 11
0
        /// <summary>
        /// Slice the meshes and return the slice stack.
        /// </summary>
        public PlanarSliceStack Compute()
        {
            if (Meshes.Count == 0)
            {
                return(new PlanarSliceStack());
            }

            Interval1d zrange = Interval1d.Empty;

            foreach (var meshinfo in Meshes)
            {
                zrange.Contain(meshinfo.bounds.Min.z);
                zrange.Contain(meshinfo.bounds.Max.z);
            }
            if (SetMinZValue != double.MinValue)
            {
                zrange.a = SetMinZValue;
            }

            int nLayers = (int)(zrange.Length / LayerHeightMM);

            if (nLayers > MaxLayerCount)
            {
                throw new Exception("MeshPlanarSlicer.Compute: exceeded layer limit. Increase .MaxLayerCount.");
            }

            // make list of slice heights (could be irregular)
            List <double> heights = new List <double>();

            for (int i = 0; i < nLayers + 1; ++i)
            {
                double t = zrange.a + (double)i * LayerHeightMM;
                if (SliceLocation == SliceLocations.EpsilonBase)
                {
                    t += 0.01 * LayerHeightMM;
                }
                else if (SliceLocation == SliceLocations.MidLine)
                {
                    t += 0.5 * LayerHeightMM;
                }
                heights.Add(t);
            }
            int NH = heights.Count;

            // process each *slice* in parallel
            PlanarSlice[] slices = new PlanarSlice[NH];
            for (int i = 0; i < NH; ++i)
            {
                slices[i] = SliceFactoryF(heights[i], i);
                slices[i].EmbeddedPathWidth = OpenPathDefaultWidthMM;
            }

            // assume Resolve() takes 2x as long as meshes...
            TotalCompute = (Meshes.Count * NH) + (2 * NH);
            Progress     = 0;


            // compute slices separately for each mesh
            for (int mi = 0; mi < Meshes.Count; ++mi)
            {
                if (Cancelled())
                {
                    break;
                }

                DMesh3           mesh         = Meshes[mi].mesh;
                PrintMeshOptions mesh_options = Meshes[mi].options;

                // [TODO] should we hang on to this spatial? or should it be part of assembly?
                DMeshAABBTree3   spatial = new DMeshAABBTree3(mesh, true);
                AxisAlignedBox3d bounds  = Meshes[mi].bounds;

                bool is_cavity   = mesh_options.IsCavity;
                bool is_crop     = mesh_options.IsCropRegion;
                bool is_support  = mesh_options.IsSupport;
                bool is_closed   = (mesh_options.IsOpen) ? false : mesh.IsClosed();
                var  useOpenMode = (mesh_options.OpenPathMode == PrintMeshOptions.OpenPathsModes.Default) ?
                                   DefaultOpenPathMode : mesh_options.OpenPathMode;

                // each layer is independent so we can do in parallel
                gParallel.ForEach(Interval1i.Range(NH), (i) => {
                    if (Cancelled())
                    {
                        return;
                    }

                    double z = heights[i];
                    if (z < bounds.Min.z || z > bounds.Max.z)
                    {
                        return;
                    }

                    // compute cut
                    Polygon2d[] polys; PolyLine2d[] paths;
                    compute_plane_curves(mesh, spatial, z, is_closed, out polys, out paths);

                    // if we didn't hit anything, try again with jittered plane
                    // [TODO] this could be better...
                    if ((is_closed && polys.Length == 0) || (is_closed == false && polys.Length == 0 && paths.Length == 0))
                    {
                        compute_plane_curves(mesh, spatial, z + LayerHeightMM * 0.25, is_closed, out polys, out paths);
                    }

                    if (is_closed)
                    {
                        // construct planar complex and "solids"
                        // (ie outer polys and nested holes)
                        PlanarComplex complex = new PlanarComplex();
                        foreach (Polygon2d poly in polys)
                        {
                            complex.Add(poly);
                        }

                        PlanarComplex.FindSolidsOptions options
                            = PlanarComplex.FindSolidsOptions.Default;
                        options.WantCurveSolids            = false;
                        options.SimplifyDeviationTolerance = 0.001;
                        options.TrustOrientations          = true;
                        options.AllowOverlappingHoles      = true;

                        PlanarComplex.SolidRegionInfo solids =
                            complex.FindSolidRegions(options);

                        if (is_support)
                        {
                            add_support_polygons(slices[i], solids.Polygons, mesh_options);
                        }
                        else if (is_cavity)
                        {
                            add_cavity_polygons(slices[i], solids.Polygons, mesh_options);
                        }
                        else if (is_crop)
                        {
                            add_crop_region_polygons(slices[i], solids.Polygons, mesh_options);
                        }
                        else
                        {
                            add_solid_polygons(slices[i], solids.Polygons, mesh_options);
                        }
                    }
                    else if (useOpenMode != PrintMeshOptions.OpenPathsModes.Ignored)
                    {
                        foreach (PolyLine2d pline in paths)
                        {
                            if (useOpenMode == PrintMeshOptions.OpenPathsModes.Embedded)
                            {
                                slices[i].AddEmbeddedPath(pline);
                            }
                            else
                            {
                                slices[i].AddClippedPath(pline);
                            }
                        }

                        // [TODO]
                        //   - does not really handle clipped polygons properly, there will be an extra break somewhere...
                        foreach (Polygon2d poly in polys)
                        {
                            PolyLine2d pline = new PolyLine2d(poly, true);
                            if (useOpenMode == PrintMeshOptions.OpenPathsModes.Embedded)
                            {
                                slices[i].AddEmbeddedPath(pline);
                            }
                            else
                            {
                                slices[i].AddClippedPath(pline);
                            }
                        }
                    }

                    Interlocked.Increment(ref Progress);
                });       // end of parallel.foreach
            }             // end mesh iter

            // resolve planar intersections, etc
            gParallel.ForEach(Interval1i.Range(NH), (i) => {
                if (Cancelled())
                {
                    return;
                }
                slices[i].Resolve();
                Interlocked.Add(ref Progress, 2);
            });

            // discard spurious empty slices
            int last = slices.Length - 1;

            while (slices[last].IsEmpty && last > 0)
            {
                last--;
            }
            int first = 0;

            if (DiscardEmptyBaseSlices)
            {
                while (slices[first].IsEmpty && first < slices.Length)
                {
                    first++;
                }
            }

            PlanarSliceStack stack = SliceStackFactoryF();

            for (int k = first; k <= last; ++k)
            {
                stack.Add(slices[k]);
            }

            if (SupportMinZTips)
            {
                stack.AddMinZTipSupportPoints(MinZTipMaxDiam, MinZTipExtraLayers);
            }

            return(stack);
        }
Exemplo n.º 12
0
        protected PlanarSlice ComputeSolidSliceAtZ(double z, bool bCavitySolids)
        {
            PlanarSlice temp = new PlanarSlice();

            for (int mi = 0; mi < Meshes.Count; ++mi)
            {
                if (Cancelled())
                {
                    break;
                }

                DMesh3           mesh         = Meshes[mi].mesh;
                PrintMeshOptions mesh_options = Meshes[mi].options;

                // [TODO] should we hang on to this spatial? or should it be part of assembly?
                DMeshAABBTree3   spatial = new DMeshAABBTree3(mesh, true);
                AxisAlignedBox3d bounds  = Meshes[mi].bounds;

                bool is_cavity   = mesh_options.IsCavity;
                bool is_crop     = mesh_options.IsCropRegion;
                bool is_support  = mesh_options.IsSupport;
                bool is_closed   = (mesh_options.IsOpen) ? false : mesh.IsClosed();
                var  useOpenMode = (mesh_options.OpenPathMode == PrintMeshOptions.OpenPathsModes.Default) ?
                                   DefaultOpenPathMode : mesh_options.OpenPathMode;
                if (is_crop || is_support)
                {
                    throw new Exception("Not supported!");
                }
                if (bCavitySolids && is_cavity == false)
                {
                    continue;
                }

                // compute cut
                Polygon2d[] polys; PolyLine2d[] paths;
                ComputeSlicePlaneCurves(mesh, spatial, z, is_closed, out polys, out paths);

                if (is_closed)
                {
                    // construct planar complex and "solids"
                    // (ie outer polys and nested holes)
                    PlanarComplex complex = new PlanarComplex();
                    foreach (Polygon2d poly in polys)
                    {
                        complex.Add(poly);
                    }

                    PlanarComplex.FindSolidsOptions options
                        = PlanarComplex.FindSolidsOptions.Default;
                    options.WantCurveSolids            = false;
                    options.SimplifyDeviationTolerance = 0.001;
                    options.TrustOrientations          = true;
                    options.AllowOverlappingHoles      = true;

                    PlanarComplex.SolidRegionInfo solids         = complex.FindSolidRegions(options);
                    List <GeneralPolygon2d>       solid_polygons = ApplyValidRegions(solids.Polygons);

                    if (is_cavity && bCavitySolids == false)
                    {
                        add_cavity_polygons(temp, solid_polygons, mesh_options);
                    }
                    else
                    {
                        add_solid_polygons(temp, solid_polygons, mesh_options);
                    }
                }
            }

            return(temp);
        }
Exemplo n.º 13
0
        /// <summary>
        /// Slice the meshes and return the slice stack.
        /// </summary>
        public Result Compute()
        {
            Result result = new Result();

            if (Meshes.Count == 0)
            {
                return(result);
            }

            // find Z interval we want to slice in
            Interval1d zrange = Interval1d.Empty;

            foreach (var meshinfo in Meshes)
            {
                zrange.Contain(meshinfo.bounds.Min.z);
                zrange.Contain(meshinfo.bounds.Max.z);
            }
            if (SetMinZValue != double.MinValue)
            {
                zrange.a = SetMinZValue;
            }

            result.TopZ  = Math.Round(zrange.b, PrecisionDigits);
            result.BaseZ = Math.Round(zrange.a, PrecisionDigits);

            // [TODO] might be able to make better decisions if we took flat regions
            // into account when constructing initial Z-heights? if we have large flat
            // region just below Zstep, might make sense to do two smaller Z-steps so we
            // can exactly hit it??

            // construct list of clearing Z-heights
            List <double> clearingZLayers = new List <double>();
            double        cur_layer_z     = zrange.b;
            int           layer_i         = 0;

            while (cur_layer_z > zrange.a)
            {
                double layer_height = get_layer_height(layer_i);
                cur_layer_z -= layer_height;
                double z = Math.Round(cur_layer_z, PrecisionDigits);
                clearingZLayers.Add(z);
                layer_i++;
            }
            if (clearingZLayers.Last() < result.BaseZ)
            {
                clearingZLayers[clearingZLayers.Count - 1] = result.BaseZ;
            }
            if (clearingZLayers.Last() == clearingZLayers[clearingZLayers.Count - 2])
            {
                clearingZLayers.RemoveAt(clearingZLayers.Count - 1);
            }

            // construct layer slices from Z-heights
            List <PlanarSlice> clearing_slice_list = new List <PlanarSlice>();

            layer_i = 0;
            for (int i = 0; i < clearingZLayers.Count; ++i)
            {
                double layer_height = (i == clearingZLayers.Count - 1) ?
                                      (result.TopZ - clearingZLayers[i]) : (clearingZLayers[i + 1] - clearingZLayers[i]);
                double     z     = clearingZLayers[i];
                Interval1d zspan = new Interval1d(z, z + layer_height);

                if (SliceLocation == SliceLocations.EpsilonBase)
                {
                    z += 0.001;
                }

                PlanarSlice slice = SliceFactoryF(zspan, z, layer_i);
                clearing_slice_list.Add(slice);
                layer_i++;
            }


            int NH = clearing_slice_list.Count;

            if (NH > MaxLayerCount)
            {
                throw new Exception("MeshPlanarSlicer.Compute: exceeded layer limit. Increase .MaxLayerCount.");
            }

            PlanarSlice[] clearing_slices = clearing_slice_list.ToArray();

            // assume Resolve() takes 2x as long as meshes...
            TotalCompute = (Meshes.Count * NH) + (2 * NH);
            Progress     = 0;

            // compute slices separately for each mesh
            for (int mi = 0; mi < Meshes.Count; ++mi)
            {
                if (Cancelled())
                {
                    break;
                }

                DMesh3           mesh         = Meshes[mi].mesh;
                PrintMeshOptions mesh_options = Meshes[mi].options;

                // [TODO] should we hang on to this spatial? or should it be part of assembly?
                DMeshAABBTree3   spatial = new DMeshAABBTree3(mesh, true);
                AxisAlignedBox3d bounds  = Meshes[mi].bounds;

                bool is_cavity   = mesh_options.IsCavity;
                bool is_crop     = mesh_options.IsCropRegion;
                bool is_support  = mesh_options.IsSupport;
                bool is_closed   = (mesh_options.IsOpen) ? false : mesh.IsClosed();
                var  useOpenMode = (mesh_options.OpenPathMode == PrintMeshOptions.OpenPathsModes.Default) ?
                                   DefaultOpenPathMode : mesh_options.OpenPathMode;

                if (is_crop || is_support)
                {
                    throw new Exception("Not supported!");
                }

                // each layer is independent so we can do in parallel
                gParallel.ForEach(Interval1i.Range(NH), (i) => {
                    if (Cancelled())
                    {
                        return;
                    }

                    double z = clearing_slices[i].Z;
                    if (z < bounds.Min.z || z > bounds.Max.z)
                    {
                        return;
                    }

                    // compute cut
                    Polygon2d[] polys; PolyLine2d[] paths;
                    ComputeSlicePlaneCurves(mesh, spatial, z, is_closed, out polys, out paths);

                    if (is_closed)
                    {
                        // construct planar complex and "solids"
                        // (ie outer polys and nested holes)
                        PlanarComplex complex = new PlanarComplex();
                        foreach (Polygon2d poly in polys)
                        {
                            complex.Add(poly);
                        }

                        PlanarComplex.FindSolidsOptions options
                            = PlanarComplex.FindSolidsOptions.Default;
                        options.WantCurveSolids            = false;
                        options.SimplifyDeviationTolerance = 0.001;
                        options.TrustOrientations          = true;
                        options.AllowOverlappingHoles      = true;

                        PlanarComplex.SolidRegionInfo solids   = complex.FindSolidRegions(options);
                        List <GeneralPolygon2d> solid_polygons = ApplyValidRegions(solids.Polygons);

                        if (is_cavity)
                        {
                            add_cavity_polygons(clearing_slices[i], solid_polygons, mesh_options);
                        }
                        else
                        {
                            if (ExpandStockAmount > 0)
                            {
                                solid_polygons = ClipperUtil.MiterOffset(solid_polygons, ExpandStockAmount);
                            }
                            add_solid_polygons(clearing_slices[i], solid_polygons, mesh_options);
                        }
                    }

                    Interlocked.Increment(ref Progress);
                });       // end of parallel.foreach
            }             // end mesh iter

            // resolve planar intersections, etc
            gParallel.ForEach(Interval1i.Range(NH), (i) => {
                if (Cancelled())
                {
                    return;
                }
                clearing_slices[i].Resolve();
                Interlocked.Add(ref Progress, 2);
            });
            // add to clearing stack
            result.Clearing = SliceStackFactoryF();
            for (int k = 0; k < clearing_slices.Length; ++k)
            {
                result.Clearing.Add(clearing_slices[k]);
            }



            /*
             * Horizontal planar regions finishing pass.
             * First we find all planar horizontal Z-regions big enough to mill.
             * Then we add slices at the Z's we haven't touched yet.
             *
             * Cannot just 'fill' planar regions because we will miss edges that might
             * be millable. So we grow region and then intersect with full-slice millable area.
             */

            // find set of horizontal flat regions
            Dictionary <double, List <PlanarRegion> > flat_regions = FindPlanarZRegions(ToolDiameter);

            if (flat_regions.Count == 0)
            {
                goto done_slicing;
            }

            // if we have already milled this exact Z-height in clearing pass, then we can skip it
            List <double> doneZ = new List <double>();

            foreach (double z in flat_regions.Keys)
            {
                if (clearingZLayers.Contains(z))
                {
                    doneZ.Add(z);
                }
            }
            foreach (var z in doneZ)
            {
                flat_regions.Remove(z);
            }

            // create slice for each layer
            PlanarSlice[] horz_slices = new PlanarSlice[flat_regions.Count];
            List <double> flatZ       = new List <double>(flat_regions.Keys);

            flatZ.Sort();
            for (int k = 0; k < horz_slices.Length; ++k)
            {
                double     z     = flatZ[k];
                Interval1d zspan = new Interval1d(z, z + LayerHeightMM);
                horz_slices[k] = SliceFactoryF(zspan, z, k);

                // compute full millable region slightly above this slice.
                PlanarSlice clip_slice = ComputeSolidSliceAtZ(z + 0.0001, false);
                clip_slice.Resolve();

                // extract planar polys
                List <Polygon2d> polys   = GetPlanarPolys(flat_regions[z]);
                PlanarComplex    complex = new PlanarComplex();
                foreach (Polygon2d poly in polys)
                {
                    complex.Add(poly);
                }

                // convert to planar solids
                PlanarComplex.FindSolidsOptions options
                    = PlanarComplex.FindSolidsOptions.SortPolygons;
                options.SimplifyDeviationTolerance = 0.001;
                options.TrustOrientations          = true;
                options.AllowOverlappingHoles      = true;
                PlanarComplex.SolidRegionInfo solids         = complex.FindSolidRegions(options);
                List <GeneralPolygon2d>       solid_polygons = ApplyValidRegions(solids.Polygons);

                // If planar solid has holes, then when we do inset later, we might lose
                // too-thin parts. Shrink the holes to avoid this case.
                //FilterHoles(solid_polygons, 0.55 * ToolDiameter);

                // ok now we need to expand region and intersect with full region.
                solid_polygons = ClipperUtil.MiterOffset(solid_polygons, ToolDiameter * 0.5, 0.0001);
                solid_polygons = ClipperUtil.Intersection(solid_polygons, clip_slice.Solids, 0.0001);

                // Same idea as above, but if we do after, we keep more of the hole and
                // hence do less extra clearing.
                // Also this could then be done at the slicer level instead of here...
                // (possibly this entire thing should be done at slicer level, except we need clip_slice!)
                FilterHoles(solid_polygons, 1.1 * ToolDiameter);

                add_solid_polygons(horz_slices[k], solid_polygons, PrintMeshOptions.Default());
            }

            // resolve planar intersections, etc
            int NF = horz_slices.Length;

            gParallel.ForEach(Interval1i.Range(NF), (i) => {
                if (Cancelled())
                {
                    return;
                }
                horz_slices[i].Resolve();
                Interlocked.Add(ref Progress, 2);
            });
            // add to clearing stack
            result.HorizontalFinish = SliceStackFactoryF();
            for (int k = 0; k < horz_slices.Length; ++k)
            {
                result.HorizontalFinish.Add(horz_slices[k]);
            }

done_slicing:
            return(result);
        }
Exemplo n.º 14
0
 public void Add(PlanarSlice slice)
 {
     Slices.Add(slice);
 }