Exemplo n.º 1
0
        void do_solve(double sumXX, double sumXY, double sumXZ, double sumYY, double sumYZ, double sumZZ, double invSumMultiplier)
        {
            sumXX *= invSumMultiplier;
            sumXY *= invSumMultiplier;
            sumXZ *= invSumMultiplier;
            sumYY *= invSumMultiplier;
            sumYZ *= invSumMultiplier;
            sumZZ *= invSumMultiplier;

            double[] matrix = new double[] {
                sumXX, sumXY, sumXZ,
                sumXY, sumYY, sumYZ,
                sumXZ, sumYZ, sumZZ
            };

            // Setup the eigensolver.
            SymmetricEigenSolver solver = new SymmetricEigenSolver(3, 4096);
            int iters = solver.Solve(matrix, SymmetricEigenSolver.SortType.Increasing);

            ResultValid = (iters > 0 && iters < SymmetricEigenSolver.NO_CONVERGENCE);
            if (ResultValid)
            {
                Box.Extent = new Vector3d(solver.GetEigenvalues());
                double[] evectors = solver.GetEigenvectors();
                Box.AxisX = new Vector3d(evectors[0], evectors[1], evectors[2]);
                Box.AxisY = new Vector3d(evectors[3], evectors[4], evectors[5]);
                Box.AxisZ = new Vector3d(evectors[6], evectors[7], evectors[8]);
            }
        }
Exemplo n.º 2
0
        public GaussPointsFit3(IEnumerable <Vector3d> points)
        {
            Box = new Box3d(Vector3d.Zero, Vector3d.One);

            // Compute the mean of the points.
            int numPoints = 0;

            foreach (Vector3d v in points)
            {
                Box.Center += v;
                numPoints++;
            }
            double invNumPoints = (1.0) / numPoints;

            Box.Center *= invNumPoints;

            // Compute the covariance matrix of the points.
            double sumXX = (double)0, sumXY = (double)0, sumXZ = (double)0;
            double sumYY = (double)0, sumYZ = (double)0, sumZZ = (double)0;

            foreach (Vector3d p in points)
            {
                Vector3d diff = p - Box.Center;
                sumXX += diff[0] * diff[0];
                sumXY += diff[0] * diff[1];
                sumXZ += diff[0] * diff[2];
                sumYY += diff[1] * diff[1];
                sumYZ += diff[1] * diff[2];
                sumZZ += diff[2] * diff[2];
            }

            sumXX *= invNumPoints;
            sumXY *= invNumPoints;
            sumXZ *= invNumPoints;
            sumYY *= invNumPoints;
            sumYZ *= invNumPoints;
            sumZZ *= invNumPoints;

            double[] matrix = new double[] {
                sumXX, sumXY, sumXZ,
                sumXY, sumYY, sumYZ,
                sumXZ, sumYZ, sumZZ
            };

            // Setup the eigensolver.
            SymmetricEigenSolver solver = new SymmetricEigenSolver(3, 4096);
            int iters = solver.Solve(matrix, SymmetricEigenSolver.SortType.Increasing);

            ResultValid = (iters > 0 && iters < SymmetricEigenSolver.NO_CONVERGENCE);

            Box.Extent = new Vector3d(solver.GetEigenvalues());
            double[] evectors = solver.GetEigenvectors();
            Box.AxisX = new Vector3d(evectors[0], evectors[1], evectors[2]);
            Box.AxisY = new Vector3d(evectors[3], evectors[4], evectors[5]);
            Box.AxisZ = new Vector3d(evectors[6], evectors[7], evectors[8]);
        }
        public OrthogonalPlaneFit3(IEnumerable <Vector3d> points)
        {
            // Compute the mean of the points.
            Origin = Vector3d.Zero;
            int numPoints = 0;

            foreach (Vector3d v in points)
            {
                Origin += v;
                numPoints++;
            }
            double invNumPoints = (1.0) / numPoints;

            Origin *= invNumPoints;

            // Compute the covariance matrix of the points.
            double sumXX = (double)0, sumXY = (double)0, sumXZ = (double)0;
            double sumYY = (double)0, sumYZ = (double)0, sumZZ = (double)0;

            foreach (Vector3d p in points)
            {
                Vector3d diff = p - Origin;
                sumXX += diff[0] * diff[0];
                sumXY += diff[0] * diff[1];
                sumXZ += diff[0] * diff[2];
                sumYY += diff[1] * diff[1];
                sumYZ += diff[1] * diff[2];
                sumZZ += diff[2] * diff[2];
            }

            sumXX *= invNumPoints;
            sumXY *= invNumPoints;
            sumXZ *= invNumPoints;
            sumYY *= invNumPoints;
            sumYZ *= invNumPoints;
            sumZZ *= invNumPoints;

            double[] matrix = new double[] {
                sumXX, sumXY, sumXZ,
                sumXY, sumYY, sumYZ,
                sumXZ, sumYZ, sumZZ
            };

            // Setup the eigensolver.
            SymmetricEigenSolver solver = new SymmetricEigenSolver(3, 4096);
            int iters = solver.Solve(matrix, SymmetricEigenSolver.SortType.Decreasing);

            ResultValid = (iters > 0 && iters < SymmetricEigenSolver.NO_CONVERGENCE);

            Normal = new Vector3d(solver.GetEigenvector(2));
        }
Exemplo n.º 4
0
        // The quadratic fit is
        //
        //   0 = C[0] + C[1]*X + C[2]*Y + C[3]*X^2 + C[4]*Y^2 + C[5]*X*Y
        //
        // subject to Length(C) = 1.  Minimize E(C) = C^t M C with Length(C) = 1
        // and M = (sum_i V_i)(sum_i V_i)^t where
        //
        //   V = (1, X, Y, X^2, Y^2, X*Y)
        //
        // The minimum value is the smallest eigenvalue of M and C is a corresponding
        // unit length eigenvector.
        //
        // Input:
        //   n = number of points to fit
        //   p[0..n-1] = array of points to fit
        //
        // Output:
        //   c[0..5] = coefficients of quadratic fit (the eigenvector)
        //   return value of function is nonnegative and a measure of the fit
        //   (the minimum eigenvalue; 0 = exact fit, positive otherwise)

        // Canonical forms.  The quadratic equation can be factored into
        // P^T A P + B^T P + K = 0 where P = (X,Y,Z), K = C[0], B = (C[1],C[2],C[3]),
        // and A is a 3x3 symmetric matrix with A00 = C[4], A11 = C[5], A22 = C[6],
        // A01 = C[7]/2, A02 = C[8]/2, and A12 = C[9]/2.  Matrix A = R^T D R where
        // R is orthogonal and D is diagonal (using an eigendecomposition).  Define
        // V = R P = (v0,v1,v2), E = R B = (e0,e1,e2), D = diag(d0,d1,d2), and f = K
        // to obtain
        //
        //   d0 v0^2 + d1 v1^2 + d2 v^2 + e0 v0 + e1 v1 + e2 v2 + f = 0
        //
        // The characterization depends on the signs of the d_i.
        public static double Fit(Vector2d[] points, double[] coefficients)
        {
            DenseMatrix A         = new DenseMatrix(6, 6);
            int         numPoints = points.Length;

            for (int i = 0; i < numPoints; ++i)
            {
                double x    = points[i].x;
                double y    = points[i].y;
                double x2   = x * x;
                double y2   = y * y;
                double xy   = x * y;
                double x3   = x * x2;
                double xy2  = x * y2;
                double x2y  = x * xy;
                double y3   = y * y2;
                double x4   = x * x3;
                double x2y2 = x * xy2;
                double x3y  = x * x2y;
                double y4   = y * y3;
                double xy3  = x * y3;

                A[0, 1] += x;
                A[0, 2] += y;
                A[0, 3] += x2;
                A[0, 4] += y2;
                A[0, 5] += xy;
                A[1, 3] += x3;
                A[1, 4] += xy2;
                A[1, 5] += x2y;
                A[2, 4] += y3;
                A[3, 3] += x4;
                A[3, 4] += x2y2;
                A[3, 5] += x3y;
                A[4, 4] += y4;
                A[4, 5] += xy3;
            }

            A[0, 0] = (double)numPoints;
            A[1, 1] = A[0, 3];
            A[1, 2] = A[0, 5];
            A[2, 2] = A[0, 4];
            A[2, 3] = A[1, 5];
            A[2, 5] = A[1, 4];
            A[5, 5] = A[3, 4];

            for (int row = 0; row < 6; ++row)
            {
                for (int col = 0; col < row; ++col)
                {
                    A[row, col] = A[col, row];
                }
            }

            double invNumPoints = 1.0 / (double)numPoints;

            for (int row = 0; row < 6; ++row)
            {
                for (int col = 0; col < 6; ++col)
                {
                    A[row, col] *= invNumPoints;
                }
            }

            SymmetricEigenSolver es = new SymmetricEigenSolver(6, 1024);

            es.Solve(A.Buffer, SymmetricEigenSolver.SortType.Increasing);
            es.GetEigenvector(0, coefficients);

            // For an exact fit, numeric round-off errors might make the minimum
            // eigenvalue just slightly negative.  Return the absolute value since
            // the application might rely on the return value being nonnegative.
            return(Math.Abs(es.GetEigenvalue(0)));
        }
Exemplo n.º 5
0
        // If you think your points are nearly circular, use this.  The circle is of
        // the form C'[0]+C'[1]*X+C'[2]*Y+C'[3]*(X^2+Y^2), where Length(C') = 1.  The
        // function returns C = (C'[0]/C'[3],C'[1]/C'[3],C'[2]/C'[3]), so the fitted
        // circle is C[0]+C[1]*X+C[2]*Y+X^2+Y^2.  The center is (xc,yc) =
        // -0.5*(C[1],C[2]) and the radius is r = sqrt(xc*xc+yc*yc-C[0]).
        public static double FitCircle2(Vector2d[] points, out Circle2d circle)
        {
            DenseMatrix A         = new DenseMatrix(4, 4);
            int         numPoints = points.Length;

            for (int i = 0; i < numPoints; ++i)
            {
                double x   = points[i].x;
                double y   = points[i].y;
                double x2  = x * x;
                double y2  = y * y;
                double xy  = x * y;
                double r2  = x2 + y2;
                double xr2 = x * r2;
                double yr2 = y * r2;
                double r4  = r2 * r2;

                A[0, 1] += x;
                A[0, 2] += y;
                A[0, 3] += r2;
                A[1, 1] += x2;
                A[1, 2] += xy;
                A[1, 3] += xr2;
                A[2, 2] += y2;
                A[2, 3] += yr2;
                A[3, 3] += r4;
            }

            A[0, 0] = (double)numPoints;

            for (int row = 0; row < 4; ++row)
            {
                for (int col = 0; col < row; ++col)
                {
                    A[row, col] = A[col, row];
                }
            }

            double invNumPoints = 1.0 / (double)numPoints;

            for (int row = 0; row < 4; ++row)
            {
                for (int col = 0; col < 4; ++col)
                {
                    A[row, col] *= invNumPoints;
                }
            }

            SymmetricEigenSolver es = new SymmetricEigenSolver(4, 1024);

            es.Solve(A.Buffer, SymmetricEigenSolver.SortType.Increasing);
            double[] evector = new double[4];
            es.GetEigenvector(0, evector);

            double   inv          = 1.0 / evector[3];   // TODO: Guard against zero divide?
            Vector3d coefficients = Vector3d.Zero;

            for (int row = 0; row < 3; ++row)
            {
                coefficients[row] = inv * evector[row];
            }

            Vector2d center = new Vector2d(-0.5 * coefficients[1], -0.5 * coefficients[2]);
            double   r      = Math.Sqrt(Math.Abs(center.LengthSquared - coefficients[0]));

            circle = new Circle2d(center, r);

            // For an exact fit, numeric round-off errors might make the minimum
            // eigenvalue just slightly negative.  Return the absolute value since
            // the application might rely on the return value being nonnegative.
            return(Math.Abs(es.GetEigenvalue(0)));
        }