Exemplo n.º 1
0
        public FuzzyTable RemoveRows(int fromIndex, int toIndex)
        {
            var newTable = new FuzzyTable();

            newTable.table          = this.table.Clone();
            newTable.attributes     = new Dictionary <string, FuzzyAttribute>(this.attributes);
            newTable.classAttribute = (FuzzyAttribute)this.classAttribute.Clone();
            newTable.PositiveColumn = this.PositiveColumn;
            newTable.NegativeColumn = this.NegativeColumn;

            var rowsToDelete = new List <DataRow>();

            for (int i = fromIndex; i < toIndex; i++)
            {
                var row = this.table.DefaultView[i].Row;
                newTable.GetTable().ImportRow(row);
                rowsToDelete.Add(row);
            }
            foreach (var row in rowsToDelete)
            {
                row.Delete();
            }

            this.table.AcceptChanges();
            return(newTable);
        }
Exemplo n.º 2
0
        public virtual FuzzyTable Clone()
        {
            var newTable = new FuzzyTable();

            newTable.attributes     = new Dictionary <string, FuzzyAttribute>(this.attributes);
            newTable.classAttribute = (FuzzyAttribute)this.classAttribute.Clone();
            newTable.PositiveColumn = this.PositiveColumn;
            newTable.NegativeColumn = this.NegativeColumn;
            newTable.table          = this.table.Copy();
            return(newTable);
        }
Exemplo n.º 3
0
        static void Main(string[] args)
        {
            var table = new FuzzyTable();

            try
            {   // Open the text file using a stream reader.
                using (StreamReader sr = new StreamReader("./data/bupa_fuzzy.json"))

                {
                    String  json  = sr.ReadToEnd();
                    dynamic array = JsonConvert.DeserializeObject(json);

                    for (int i = 0; i < array.attributes.Count - 1; i++)
                    {
                        table.addAttribute(array.attributes[i]);
                    }

                    table.addClassAttribute(array.attributes[array.attributes.Count - 1], "yes", "no");
                    table.AddData(array.data);
                    Console.WriteLine("Started");

                    var alg = new Algorithm01(0, 0.6);
                    // var alg = new Algorithm01Modification(0, 0.62, 0.2);
                    int maxReplications = 30;

                    int    replications = 0;
                    double TP           = 0;
                    double FP           = 0;
                    double TN           = 0;
                    double FN           = 0;
                    double accuracy     = 0;
                    double sensitivity  = 0;
                    double specificity  = 0;
                    double precision    = 0;
                    for (int i = 0; i < maxReplications; i++)
                    {
                        alg.init(table);
                        var validation01 = new TenCrossValidation();
                        var matrix       = validation01.Validate(10, table, alg);
                        if (matrix != null)
                        {
                            accuracy    += matrix.Accuracy();
                            sensitivity += matrix.Sensitivity();
                            specificity += matrix.Specificity();
                            precision   += matrix.Precision();
                            TP          += matrix.TruePositivePercent;
                            FP          += matrix.FalsePositivePercent;
                            TN          += matrix.TrueNegativePercent;
                            FN          += matrix.FalseNegativePercent;
                            replications++;
                        }
                        Console.WriteLine(i + " Criteria: " + ((sensitivity / replications) + (specificity / replications)) / 2);
                    }

                    Console.WriteLine();
                    Console.WriteLine("Replications: " + replications);
                    Console.WriteLine("TP: " + TP / replications);
                    Console.WriteLine("FP: " + FP / replications);
                    Console.WriteLine("TN: " + TN / replications);
                    Console.WriteLine("FN: " + FN / replications);
                    Console.WriteLine("Accuracy: " + accuracy / replications);
                    Console.WriteLine("Sensitivity: " + sensitivity / replications);
                    Console.WriteLine("Specificity: " + specificity / replications);
                    Console.WriteLine("Precision: " + precision / replications);
                    Console.WriteLine("Criteria: " + ((sensitivity / replications) + (specificity / replications)) / 2);

                    return;
                }
            }
            catch (Exception e)
            {
                Console.WriteLine("The file could not be read:");
                Console.WriteLine(e.Message);
                Console.WriteLine(e);
            }
        }